Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2131
DC FieldValueLanguage
dc.contributor.authorallCarbone, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallGreco, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2007-06-11T08:11:12Zen
dc.date.available2007-06-11T08:11:12Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2131en
dc.description.abstractDiscrete and continuous microgravity observations have been routinely performed at Mt. Etna since 1986 and 1998, respectively. Besides furnishing a full view of how gravity measurements from Etna are accomplished and reduced, this paper is a collection of case studies aimed at demonstrating the potential of microgravity studies to investigate the plumbing system of an active volcano and detect forerunners to paroxysmal volcanic events. As for discrete measurements, case studies relative to the 1994-96 and 2001 periods are reported. During the first period, the observed gravity changes are interpreted within the framework of the strombolian activity which occurred from the summit craters. Gravity changes observed during the first 9 months of 2001 are directly related to the underground mass redistributions who preceded, accompanied and followed the July-August 2001 flank eruption of Etna. As for continuous measurements, a three-year (1998-2000) sequence and a 48-hour (26-28 October 2002) sequence, both from PDN station, are presented and discussed. The first one is maybe the longest continuous gravity sequence ever acquired at a station very close to the summit zone of an active volcano. It allows to discover the cyclic character of a source whose geometrical characteristics are retrieved through data from discrete measurements. The second sequence is also likely to represent an unique item: a gravity sequence encompassing the onset of an eruption and coming from a station only 1.5 km from the eruptive fissures. It allows some constraints to be set on the characteristics of the intrusive mechanism leading to the eruption.en
dc.format.extent67973 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.subjectMt Etnaen
dc.subjectmicrogravityen
dc.subjectmagma sourcesen
dc.subjectmodelingen
dc.titleInsights into the internal dynamics of Etna volcano through discrete and continuous microgravity observationsen
dc.typemanuscripten
dc.description.statusSubmitteden
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.relation.referencesAndò, B. and Carbone, D. (2001), A Methodology for Reducing the Signal from a Continuously Recording Gravity Meter for the Effect of Meteorological Parameters, IEEE Transactions on Instrumentation and Measurement, 50 (5), 1248-1254. Andò, B. and Carbone, D. (2004), A test on a Neuro-Fuzzy algorithm used to reduce continuous gravity records for the effect of meteorological parameters, Phys. of the Earth and Planet. Int. 142, 37-47. Andronico, D., Branca, S., Calvari, S., Burton, M.B., Caltabiano, T., Corsaro, R.A., Del Carlo, P., Garfì, G., Lodato, L., Miraglia, L., Murè, F., Neri, M., Pecora, E., Pompilio, M., Salerno, G. and Spampinato, L. (2005), A multi-disciplinary study of the 2002–03 Etna eruption: insights into a complex plumbing system, Bull. Volcanol. 67, 314–330. Armienti, P., D’Orazio, M., Innocenti, F., Tonarini, S. and Villari, L. (1996), October 1995- February 1996 Mt Etna explosive activity: trace element and isotopic constraints on the feeding system, Acta Vulcanol. 8, 1-6. Bonaccorso, A., Aloisi, M. and Mattia, M. (2002), Dike emplacement forerunning the Etna July 2001 eruption modelled through continuous tilt and GPS data, Geoph. Res. Lett. 29, 13. Bonaccorso, A., D’Amico, S., Mattia, M. and Patanè, D. (2004), Intrusive mechanism at Mt Etna forerunning the July-August 2001 eruption, Pure Appl. Geophys. 161, 7, 1469-1487. Bonforte, A., Guglielmino, F., Palano, M., Puglisi, G., Ferretti, A., Colesanti, C., Dynamics of Mt. Etna before, during and after the 2001 eruption inferred from GPS and InSAR data, J. Geoph. Res. Submitted. Borgia, A., Ferrari, L. and Pasquarè, G. (1992), Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna, Nature, 357, 231-235. Budetta, G., Grimaldi, M. and Luongo, G. (1989), Variazioni di gravità nell’area etnea (1986-1989), Boll. GNV, 5, 137-146. Budetta, G. and Carbone, D. (1997), Potential application of the Scintrex CG-3M gravimeter for monitoring volcanic activity: results of field trials on Mt. Etna, Sicily, J. Volcanol. Geotherm. Res. 66, 199-214. Budetta, G. and Carbone, D. (1998), Temporal variations in gravity at Mt Etna (Italy) associated with the 1989 and 1991 eruptions, Bull. Volcanol. 59, 311-326. Budetta, G., Carbone, D. and Greco, F. (1999), Subsurface mass redistribution at Mount Etna (Italy) during the 1995-96 explosive activity detected by microgravity studies, Geophys. J. Int. 138, 77-88. Budetta, G., Carbone, D., Greco, F. and Rymer, H. (2004), Microgravity Studies at Mount Etna (Italy). in “Mt. Etna: Volcano Laboratory”, Geophys. Monogr. Ser. 143, edited by Calvari S., Bonaccorso A., Coltelli M., Del Negro C., Falsaperla S. (Eds), AGU (Geophysical monograph series; 143) 221-240. Branca, S., Carbone, D. and Greco, F. (2003), Intrusive mechanism of the 2002 NE-Rift eruption at Mt. Etna (Italy) inferred through continuous microgravity data and volcanological evidences, Geoph. Res. Lett. 30, 20, 2077, 10.1029/2003GL018250. Carbone, D., Budetta, G. and Greco, F. (2003a), Possible mechanisms of magma redistribution under Mt Etna during the 1994–1999 period detected through microgravity measurements, Geoph. J. Int. 152, 1–14. Carbone, D., Budetta, G., Greco, F. (2003b), Bulk processes some months before the start of the 2001 Mt Etna eruption, evidenced throught microgravity studies, J. Geoph. Res. Vol. 108, No. B12, 2556. Carbone, D., Budetta, G., Greco, F. and Rymer, H. (2003c), Combined discrete and continuous gravity observations at Mt. Etna, J. Volcanol. Geoth. Res. 2581, 1-13. Dzurisin, D., Anderson, L. A., Eaton, G. P., Koyanagi, R. Y., Lipman, P. W., Lockwood, J. P., kamura, R. T., Puniwai, G. S., Sako, M. K. and Yamashita, K. M. (1980), Geophysical observations of Kilauea volcano, Hawaii, 2. Constraints on the magma supply during November 1975-September 1977, J. Volcanol. Geotherm. Res. 7, 241-269. Ferrari, L. (1991), Evoluzione vulcanologica e strutturale del Monte Etna e i suoi rapporti con il vulcanismo ibleo, PhD thesis, Dipartimento di Scienze della Terra, Università di Milano, Milano. Froger, J.L., Merle, O. and Briole, P. (2001), Active spreading and regional extension at Mount Etna imaged by SAR interferometry, Earth Planet. Sci. Lett., 187, 245-258. Garduño, V.H., Neri, M., Pasquarè, G., Borgia, A. and Ribaldi, A. (1997), Geology of the NERift of Mount Etna (Sicily, Italy), Acta Vulcanol. 9, 1/2, 91-100. INGV-Sezione di Catania Research Staff (2001), Multidisciplinary approach Yelds insight into Mt. Etna eruption, Eos, Transactions, American Geophysical Union, 82, 50, 653-656. LaCoste & Romber, (1997), General Catalog, Austin, Texas (U.S.A). Laigle, M., Hirn, A., Sapin, M. and Lepine, J.C. (2000), Mount Etna dense array local earthquakes P and S tomography and implications for volcanic plumbing, J. Geophys. Res. 105, 21633-21646. Lautze, N.C., Harris, A.J.L., Bailey, J.E., Ripepe, M., Calvari, S., Dehn, J., Rowland S. and Evans-Jones, K. (2004), Pulsed lava effusion at Mount Etna during 2001, J. Volcanol. Geotherm. Res. 137, 231-246. Leonardi, S., Caltabiano, T., Gresta, S., Mulargia, F., Privitera, E., Romano, R. and Rossi. P.L. (1999), Cross-correlation between volcanic tremor and SO2 flux data from Mt. Etna volcano, 1987-1995, Acta Vulcanologica, 11 (2), 225-258 Lo Giudice, E. and Rasà, R. (1992), Very shallow earthquakes and brittle deformation in active volcanic areas: the Etnean region as an example, Tectonophysics, 202, 257-268. Merriam, J.B. (1992), Atmospheric pressure and gravity. Geophys. J. Int. 109, 488-500. Niebauer, T.M. (1988), Correcting gravity measurements for the effect of local air pressure, J. Geoph. Res. 93, 7989-7991. Patanè, D., Chiarabba, C., Cocina, O., De Gori, P., Moretti, M. and Boschi, E. (2002), Tomographic images and 3D earthquake locations of the seismic swarm preceding the 2001 Mt. Etna eruption: Evidence for a dyke intrusion, Geophys. Res. Lett. 29 NO. 10, 10.1029/2001GL014391. Pompilio, M., Corsaro, R.A., Freda, C., Miraglia, L., Scarlato, P. and Taddeucci, J. (2001), Petrological Evidences of a Complex Plumbing System Feeding the July-August 2001 Eruption of Mt. Etna, EOS Trans. Am. Geophys. Union, Fall Meeting Suppl. Abstract 82 (47) F1412. Puglisi, G. and Bonforte, A. (1999), Monitoring active deformation of volcanoes by interferometry as an early warning system, in: MADVIEWS, EC Project n. ENV4-CT96- 0294, contribution of CNR – IIV, Final Report. Rymer, H. (1989), A contribution to precision microgravity data analysis using LaCoste and Romberg gravity meters, Geophys. J. 97, 311-322. Seidl, D., Schick, R. and Riuscetti, M. (1981), Volcanic tremors at Etna: a model for hydraulic origin, Bull. Volcanol. 44, 43-56. Schick, R. (1988), Volcanic tremor-source mechanism and correlation with eruptive activity, Natural Hazard, 141, 125–144. Scintrex Limited, (1992), Autograv Operator Manual Version 4.4, Concord, Ontario (Canada). Spampinato, S., Gambino, S., Patane, D., Privitera, E., D’Amico, G., Di Prima, S., Pellegrino, A., Scuderi, L. and Torrisi, O. (1998), Seismic activity, in: Data related to eruptive activity, unrest phenomena and other observations on the Italian active volcanoes. Geophysical Monitoring of the Italian Active volcanoes 1993-1995 - Etna (P. Gasperini ed), Acta Volcanol. 10, 149-153. Spratt, R.S. (1982), Modelling the effect of atmospheric pressure variations on gravity, Geoph. J. R. Astron. Soc., 71, 173-186. Torge, W. (1989), Gravimetry, ed. Walter de Gruyter. Berlin-New York. Wenzel, H.G. (1996), The nanogal software: Earth tide data processing package ETERNA 3.30. Inf. Marées Terrestres. 124, 9425-9439.en
dc.description.fulltextopenen
dc.contributor.authorCarbone, D.en
dc.contributor.authorGreco, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypemanuscript-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0003-2566-6290-
crisitem.author.orcid0000-0002-0265-5073-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Manuscripts
Files in This Item:
File Description SizeFormat
971.pdf66.38 kBAdobe PDFView/Open
Show simple item record

Page view(s) 50

201
checked on Apr 24, 2024

Download(s) 50

171
checked on Apr 24, 2024

Google ScholarTM

Check