Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2126
DC FieldValueLanguage
dc.contributor.authorallRichter, C.; Department of Geology, University of Louisiana at Lafayette, P.O. Box 44530, Lafayette, LA 70504, USAen
dc.contributor.authorallVenuti, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallVerosub, K.; Department of Geology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USAen
dc.contributor.authorallWei, K. Y.; Department of Geosciences, National Taiwan University, P.O. Box 13-318, Taipei, Taiwan, ROC, 106en
dc.date.accessioned2007-05-31T12:47:31Zen
dc.date.available2007-05-31T12:47:31Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2126en
dc.description.abstractWe conducted detailed rock magnetic investigations on 36m of drill core collected during Ocean Drilling Program Leg 195 at Hole 1202B (24◦48.24 N, 122◦30.00 E), in the Southern Okinawa Trough, with the goal of extracting a reliable paleointensity signal with centennial resolution. An age-depth model was established from a chronology obtained by accelerator mass spectromety 14C dating. The sedimentary section spans almost the entire Holocene (0–9.4 kyr) and exhibits sedimentation rates close to 400 cm/kyr. The magnetic properties are dominated by stable, pseudo-single domain magnetite. High-field hysteresis data and the grain-size sensitive ratio of anhysteretic remanent magnetization (ARM) to low field magnetic susceptibility indicate a narrow range of grain sizes and concentrations. Magnetic parameters vary by a factor of 4 thereby fulfilling the usual criteria for a relative paleointensity study. The relative geomagnetic paleointensity was obtained by normalizing the intensity of natural remanent magnetization (NRM) by the ARM and the low field magnetic susceptibility. Both normalizations yield nearly identical results (r = 0.89). Spectral analysis indicates that the record is not significantly affected by local environmental conditions. Comparison of thisWest Pacific paleointensity curve with other curves suggests a geomagnetic origin for the signal. Millennial-scale features of our record correlate to variations of the archeomagnetic dipole moment. This suggest that the sediments at Hole1202B recorded changes of the geomagnetic field over the studied time interval.en
dc.format.extent1162269 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameELSEVIERen
dc.relation.ispartofPhysics of the Earth and Planetary Interiorsen
dc.relation.ispartofseries156 (2006)en
dc.subjectPaleomagnetismen
dc.subjectPaleointensity;en
dc.subjectPaleosecular variation;en
dc.subjectHolocene;en
dc.titleVariations of the geomagnetic field during the Holocene: Relative paleointensity and inclination record from the West Pacific (ODP Hole 1202B)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber179–193en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.identifier.doi10.1016/j.pepi.2005.08.2006en
dc.relation.referencesAldridge, K., Baker, R., 2003. Paleomagnetic intensity data: a window on the dynamics of Earth’s fluid core? Phys. Earth Planet. Int. 140, 91–100. Bard, E., 1998. Geochemical and geophysical implications of the radiocarbon calibration. Geochim. Cosmochim. Acta 62, 2025–2038. Batt, C.M., 1997. The British archaeomagnetic calibration curve: an objective treatment. Archaeometry 39, 153–168. Benson, L., Liddicoat, J., Smoot, J., Sarna-Wojcicki, A., Negrini, R., Lund, S., 2003. Age of the Mono Lake excursion and associated tephra. Quaternary Sci. Rev. 22, 135–140. Boggs Jr., S., Wang, W.C., Lewis, F.S., Chen, J.-C., 1979. Sediment properties and water characteristics of the Taiwan shelf and slope. Acta Oceanogr. Taiwanica 10, 10–49. Bond, G., Showers,W., Cheseby,M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., Bonani, G., 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 1257–1266. Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G., 2001. Persistent solar influence on north Atlantic climate during the Holocene. Science 294, 2130–2136. Brachfeld, S., Domack, E., Kissel, C., Laj, C., Leventer, A., Ishman, S., Gilbert, R., Camerlenghi, A., Eglinton, L.B., 2003. Holocene history of the Larsen-A Ice Shelf constrained by geomagnetic paleointensity dating. Geology 31, 749–752. Brachfeld, S., Banerjee, S.K., 2000. A new high-resolution geomagnetic paleointensity record for the North American Holocene: a comparison of sedimentary and absolute intensity data. J. Geophys. Res. 105, 821–834. Cang, S., Shackleton, N.J., Qin, Y., Yan, J., 1988. The discovery and significance of Globigerinoides ruber (pink-pigmented) in Okinawa Trough. Mar. Geol. Quat. Geol. 8, 24–29. Carcaillet, J.T., Bourles, D.L., and Thouveny, N., 2004a. Geomagnetic dipole moment and Be-10 production rate intercalibration from authigenic Be-10/(9) Be for the last 1.3 Ma, Geochem. Geophys. Geosys., 5: Art. No. Q05006. Carcaillet, J., Bourles, D.L., Thouveny, N., Arnold, M., 2004b. A high resolution authigenic Be-10/Be-9 record of geomagnetic moment variations over the last 300 ka from sedimentary cores of the Portuguese margin. Earth Planet. Sci. Lett. 219, 397–412. Channell, J.E.T., Mazaud, A., Sullivan, P., Turner, S., Raymo, M.E., 2002. Geomagnetic excursions and paleointensities in the Matuyama Chron at Ocean Drilling Program Sites 983 and 984 (Iceland Basin). J. Geophy. Res., 107 (B6): Art. No. 2114. Channell, J.E.T., Raymo, M.E., 2003. Paleomagnetic record at ODP Site 980 (Feni Drift, Rockall) for the past 1.2 Myrs. Geochem. Geophys. Geosys., 4: Art. No. 1033. Channell, J.E.T., Stoner, J.S., Hodell, D.A., Charles, C.D., 2000. Geomagnetic paleointensity for the last 100 kyr from the sub-antarctic South Atlantic: a tool for inter-hemispheric correlation. Earth Planet. Sci. Lett. 175, 145–160. Christl, M., Strobl, C., Mangini, A., 2003. Beryllium-10 in deep-sea sediments: a tracer for the Earth’s magnetic field intensity during the last 200,000 years. Quat. Sci. Rev. 22, 725–739. Chung, Y., Chang,W.-C., 1995. Pb-210 fluxes and sedimentation rates on the lower continental slope between Taiwan and the south Okinawa Trough. Cont. Shelf Res. 15, 149–164. Day, R., Fuller, M., Schmidt, V.A., 1977. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Int. 13, 260–267. deMenocal, P.B., Ortiz, J., Guilderson, T., Sarnthein, M., 2000. Coherent high- and low-latitude climate variability during the Holocene Warm Period. Science 288, 2198–2202. deMenocal, P.B., 2001. Cultural responses to climate change during the late Holocene. Science 292, 667–673. Dunlop, D., 1986. Hysteresis properties of magnetite and their dependence on particle size: A test of pseudo-single-comain remanence models. J. Geophys. Res. 91, 9569–9584. Eighmy, J.L., Sternberg, R.S. (Eds.), 1990. Archaeomagnetic Dating. The University of Arizona Press, Tucson, p. 446. Frank, M., 2000. Comparison of cosmogenic radionuclide production and geomagnetic field intensity over the last 200 000 years. Phil. Trans. Roy. Soc. London, Ser. A 358, 1089–1107. Frank, U., Schwab, M.J., Negendank, J.F., 2003. Results of rock magnetic investigations on lacustrine sediments from Birkat Ram, Golan Heights (Israel). J. Geophys. Res. 108, 2379, doi:10.1029/2002JB0002049. Genevey, A., Gallet, Y., Margueron, J.-C., 2003. Eight thousand years of geomagnetic field intensity variations in the eastern Mediterranean. J. Geophys. Res. 108, 2228, doi:10.1029/2001JB001612. Guyodo, Y., Acton, G.D., Brachfeld, S., Channell, J.E.T., 2001. A sedimentary paleomagnetic record of the Matuyama chron from the Western Antarctic margin (ODP Site 1101). Earth Planet. Sci. Lett. 191, 61–74. Guyodo,Y.,Valet, J.P., 1996. Relative variations in geomagnetic intensity from sedimentary records: The past 200,000 years. Earth Planet. Sci. Lett. 143, 23–36. Guyodo, Y., Valet, J.P., 1999. Global changes in intensity of the Earth’s magnetic field during the past 800 kyr. Nature 399, 249–252. Hagelberg, T., Shackleton, N.J., Pisias, N., and Shipboard Scientific Party, 1992. Development of composite depth sections for Sites 844 through 854. In: Mayer, L., Pisias, N., Janecek, T., et al. Init. Repts. Ocean Drilling Program, 138 (Pt. 1): 79–85. Hedley, I.G., 2001. Newdirections in archaeomagnetism. J. Radioanal. Nuclear Chem. 247, 663–672. Hideshima, S., Matsumoto, E., Abe, O., Kitagaawa, H., 2001. Northwest Pacific marine reservoir correction estimated from annually banded coral from Ishigaki Island. Southern Japan Radiocarbon 43, 473–476. Horng, C.S., Roberts, A.P., Liang, W.T., 2003. A 2.14-Myr astronomically tuned record of relative geomagnetic paleointensity from the western Philippine Sea. J. Geophys. Res., 108 (B1): Art. No. 2059. Hrouda, F., 1994. A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophys. J. Int. 118, 604–612. Katari, K., Tauxe, L., King, J., 2000. A reassessment of postdepositional remanent magnetism: preliminary experiments with natural sediments. Earth Planet. Sci. Lett. 183, 147–160. King, J.W., Banerjee, S.K., Marvin, J., 1983. A new rock-magnetic approach to selecting sediments for geomagnetic paleointensity studies: application to paleointensity for the last 4000 years. J. Geophys. Res. 88, 5911–5921. Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of paleomagnetic data. Geophys. J. Roy. Astronom. Soc. 62, 699–718. Kukla, G.J., 2000. Paleoclimate – the last interglacial. Science 287, 987–988. Laj, C., Kissel, C., Mazaud, A., Channell, J.E.T., Beer, J., 2000. North Atlantic palaeointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event. Phil. Trans. Roy. Soc. London, Ser. A 358, 1009–1025. Laj, C., Kissel, C., Beer, J., 2004. High resolution global paleointensity stack since 75 kyrs (GLOPIS-75) calibrated to absolute values. In: Channell, J.E.T., Kent, D.V., Lowrie, W., Meert, J.G. (Eds.), Timescales of the Paleomagnetic Field, AGU Geophysical Monograph, 145. Laj, C., Vigliotti, L., Kissel, C., Turon, J., Duprat, J., 2003. Holocene geomagnetic paleointensity records from Atlantic Ocean and Mediterranean Sea sediments. Eos Trans.AGU, 84 (46), Fall Meet. Suppl., Abstract GP22B-05. Levi, S., Banerjee, S.K., 1976. On the possibility of obtaining relative paleointensities from lake sediments. Earth. Planet. Sci. Lett. 29, 219–226. Lin, F.-T., Chen, J.-C., 1983. Textural and mineralogical studies of sediments from the southern Okinawa Trough. Acta Oceanogr. Taiwanica 14, 26–41. McElhinny, M.W., Senanayake,W.E., 1982. Variations in the geomagnetic dipole 1, the past 50 000 years. J. Geomag. Geoelectr. 140, 39–51. Meynadier, L., Valet, J.P.,Weeks, R., Shackleton, N.J., Lee Hagee, V., 1992. Relative geomagnetic intensity of the field during the last 140 ka. Earth Planet. Sci. Lett. 114, 39–57. Moran, K., 1997. Elastic property corrections applied to Leg 154 sediment, Ceara Rise. In: Shackleton, N.J., Curry, W.B., Richter, C., Bralower, T.J. (Eds.), Proc. ODP, Sci. Results. College Station, TX (Ocean Drilling Program), 154, pp. 151–156. Nunez, J.I., Osete, M.L., Bernal, D., Tarling, D.H., 2000. A first secular variation curve for Spain from archaeomagnetic data. Geol. Carpath. 51, 183–184. Ohno, M., Hamano, Y., 1993. Global analysis of the geomagneticfield: time variation of the dipole moment and the geomagnetic pole in the Holocene. J. Geomagn. Geoelectr. 45, 1455– 1466. Paillard, D., 1996. Macintosh program performs time-series analysis. EOS 77, 379. Salisbury, M.H., Shinohara, M., Richter, C., et al., 2002. Proc. ODP, Init. Repts., 195, 1–46 [CD-ROM]. Available from: Ocean Drilling Program, TexasA&MUniversity, College StationTX77845-9547, USA. Schnepp, E., Pucher, R., 2000. The German archaeomagnetic secular variation curve. Geol. Carpath. 51, 184–184. Snowball, I., Sandgren, P., 2002. Geomagnetic field variations in northern Sweden during the Holocene quantified from varved lake sediments and their implications for cosmogenic nuclide production rates. Holocene 12, 517–530. Sprowl, D.R., Banerjee, S.K., 1989. The Holocene paleosecular variation record from Elk Lake, Minnesota. J. Geophys. Res. 94, 9369–9388. Stoner, J.S., Channell, J.E.T., Hillaire-Marcel, C., Kissel, C., 2000. Geomagnetic paleointensity and environmental record from Labrador Sea core MD95-2023: Global marine and ice core chronostratigraphy for the last 110 kyr. Earth Planet. Sci. Lett. 183, 161–177. Stoner, J.S., Channell, J.E.T., Hodell. D,A, Charles, C.D., 2003. A similar to 580 kyr paleomagnetic record from the sub-Antarctic South Atlantic (Ocean Drilling Program Site 1089). J. Geophys. Res., 108: Art. No. 2244. Stoner, J.S., Laj, C., Channell, J.E.T., Kissel, C., 2002. South Atlantic and North Atlantic geomagnetic paleointensity stacks (0–80 ka): implications for inter-hemispheric correlation. Quat. Sci. Rev. 21, 1141–1151. St-Onge, G., Stoner, J.S., Hillaire-Marcel, C., 2003. Holocene paleomagnetic records from the St. Lawrence Estuary, eastern Canada: centennial- to millennial-scale geomagnetic modulation of cosmogenic isotopes. Earth Planet. Sci. Lett. 209, 113–130. Tauxe, 1993. Sedimentary records of relative paleointenstiy of the geomagnetic field: theory and practice. Rev. Geophys. 31, 319–354. Tauxe, L., LaBrecque, J.L., Dodson, R., Fuller,M., 1983. U-channels – a new technique for paleomagnetic analysis of hydraulic piston cores. EOS Trans. AGU 64, 219. Thompson, P.R., B´e, A.W.H., Duplessy, J.-C., Shackleton, N.J., 1979. Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific Oceans. Nature 280, 554–558. Thouveny, N., Carcaillet, J., Moreno, E., Leduc, G., Nerini, D., 2004. Geomagnetic moment variation and paleomagnetic excursions since 400 kyr BP: a stacked record from sedimentary sequences of the Portuguese margin. Earth Planet. Sci. Lett. 219, 377– 396. Tric, E., Valet, J.P., Tucholka, P., Paterne, M., Labeyrie, L., Guichard, F., Tauxe, L., Fortugne, M., 1992. Paleointensity of the geomagnetic field during the last 80,000 years. J. Geophys. Res. 97, 9337–9351. Valet, J.P., Meynadier, L., 1998. A comparison of different techniques for relative paleointensity. Geophys. Res. Lett. 25, 89–92. Valet, J.P., 2003. Time variations in geomagnetic intensity. Rev. Geophys. 41, 1004, doi:10.1029/2001RG000104. Venuti, A., Richter, C., Verosub, K.L., 2005. Data Report: Paleomagnetic and environmental magnetic properties of sediments from Site 1202 (Kuroshio Current). In Salisbury, M., Shinohara, M., Richter, C. (Eds.). Proc. ODP, Sci. Results, 195 [Online]. Available from World Wide Web: http://www-odp.tamu.edu/ publications/195 SR/111/111.htm. Verosub, K.L., Mehringer Jr., P.J.,Waterstraat, P., 1986. Holocene secular variation in western North America: paleomagnetic record from Fish Lake, Harney County. Oregon. J. Geophys. Res. 91, 3609–3623. Weeks, R., Laj, C., Endignoux, L., Fuller,M., Roberts, A., Manganne, R., Blanchard, E., Goree, W., 1993. Improvements in long-core measurement techniques: applications in palaeomagnetism and palaeoceanography: Geophys. J. Int. 114, 651–662. Wefer, G., Berger, W.H., Richter, C., et al., 1998. Proc. ODP, Init. Repts., 175: College Station, TX (Ocean Drilling Program). Wei, K.Y., Mii, H.-S., Huang, C.-Y., 2005. Age model and oxygen isotope stratigraphy of Site 1202 in Southern Okinawa Trough, northwest Pacific. Terrestrial, Atmospheric, and Oceanic Sciences 16 (1), 1–17. Yamazaki, T., 2002. Long-term secular variation in geomagnetic field inclination during Brunhes Chron recorded in sediment cores from Ontong-Java Plateau. Phys. Earth Planet. Int. 133, 57–72. Yang, S., Odah, H., Shaw, J., 2000. Variations in the geomagnetic dipole moment over the last 12 000 years. Geophys. J. Int. 140, 158–162. Zhao, M., Huang, C.Y., Wei, K.Y., 2005. A 28,000 year UK37 sea surface temperature record of ODP Site 1202B, Southern Okinawa Trough. Terrestrial, Atmospheric and Oceanic Sciences 16 (1), 45–56.en
dc.description.fulltextopenen
dc.contributor.authorRichter, C.en
dc.contributor.authorVenuti, A.en
dc.contributor.authorVerosub, K.en
dc.contributor.authorWei, K. Y.en
dc.contributor.departmentDepartment of Geology, University of Louisiana at Lafayette, P.O. Box 44530, Lafayette, LA 70504, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDepartment of Geology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USAen
dc.contributor.departmentDepartment of Geosciences, National Taiwan University, P.O. Box 13-318, Taipei, Taiwan, ROC, 106en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptUniversity of California, Davis,-
crisitem.author.deptDepartment of Geosciences, National Taiwan University, P.O. Box 13-318, Taipei, Taiwan, ROC, 106-
crisitem.author.orcid0000-0002-0213-3355-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
316.pdf1.14 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

413
checked on Apr 20, 2024

Download(s) 10

557
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric