Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2118
DC FieldValueLanguage
dc.contributor.authorallBertolini, A.; Dipartimento di Fisica «E. Fermi», Università degli Studi di Pisa, and Istituto Nazionale di Fisica della Materia (INFM), CNR, Pisa, Italyen
dc.contributor.authorallBeverini, N.; Dipartimento di Fisica «E. Fermi», Università degli Studi di Pisa, and Istituto Nazionale di Fisica della Materia (INFM), CNR, Pisa, Italyen
dc.contributor.authorallDe Michele, A.; Dipartimento di Fisica «E. Fermi», Università degli Studi di Pisa, and Istituto Nazionale di Fisica della Materia (INFM), CNR, Pisa, Italyen
dc.contributor.authorallFidecaro, F.; Dipartimento di Fisica «E. Fermi», Università degli Studi di Pisa, and Istituto Nazionale di Fisica della Materia (INFM), CNR, Pisa, Italyen
dc.contributor.authorallMango, F.; Dipartimento di Fisica «E. Fermi», Università degli Studi di Pisa, and Istituto Nazionale di Fisica della Materia (INFM), CNR, Pisa, Italyen
dc.date.accessioned2007-05-15T09:53:19Zen
dc.date.available2007-05-15T09:53:19Zen
dc.date.issued2006-08en
dc.identifier.urihttp://hdl.handle.net/2122/2118en
dc.description.abstractGradiometric gravimetry is a survey technique widely used in geological structure investigation. This work demonstrates the feasibility of a new class of low frequency accelerometers for geodynamics studies and space applications. We present the design features of a new low noise single-axis differential accelerometer; the sensor is suitable to be used in a Gravity Gradiometer (GG) system for land geophysical survey and gravity gradient measurements. A resolution of 1 Eötvös (1 Eö=10−9s−2) at one sample per second is achievable in a compact, lightweight (less than 2 kg) portable instrument, operating at room temperature. The basic components of the sensor are two identical rigidly connected accelerometers separated by a 15-cm baseline vector and the useful signal is extracted as the subtraction of the two outputs, by means of an interferometric microwave readout system. The structure will be engraved in a monocrystal of sapphire by means of Computer-Numerically-Controlled (CNC) ultrasonic machining: the material was chosen because of its unique mix of outstanding mechanical and dielectric properties.en
dc.format.extent623911 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofseries4-5/49 (2006)en
dc.subjectgradiometric gravimeteren
dc.subjectaccelerometeren
dc.subjectWhispering gallery cavityen
dc.titleA sapphire monolithic differential accelerometer as core sensor for gravity gradiometric geophysical instrumentationen
dc.typearticleen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methodsen
dc.relation.referencesACERNESE, F. et al. (2004): A local control system for the test masses of the VIRGO gravitational wave detector, Astroparticle Phys., 20, 617-628. BERTOLINI, A., N. BEVERINI, G. DAL LAGO, R. DESALVO, F. FIDECARO, F. FRANCESCONI, M. FRANCESCONI and G. OMICCIOLI (2003): A 5-axis CNC ultrasonic cutting machine: design and preliminary test, LIGO Technical Note T020198-00. BLAIR, D.G., E.N. IVANOV and H. PENG (1992): Sapphire dielectric resonator transducers, J. Phys. D, 25, 1110. BLAIR, D.G., E.N. IVANOV and H. PENG (1994): An ultrahigh sensitivity sapphire transducer for vibration measurements, J. Phys. D, 27, 1150. BLAIR, D.G., E.N. IVANOV, M.E. TOBAR and B.D. CUTHBERTSON (1998): Sensitivity and optimization of a high-Q sapphire dielectric motion-sensing transducer, IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 45, 1303-1313. CHAIN, H.A. and H.J. PAIK (1988a): Superconductive gravity gradiometer for sensitive gravity measurements, I. Theory, Phys. Rev. D, 35, 3551. CHAIN, H.A. and H.J. PAIK (1988b): Superconductive gravity gradiometer for sensitive gravity measurements, II. Experiment, Phys. Rev. D, 35, 3572. GOLDSTEIN, M.S. and J.J. BRETT (1998): Precision gravity gradiometer/AUV system, in Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles, AUV’98, 167-174. LEE, J.B. (2001): FALCON gravity gradiometer technology, Exploration Geophys., 32, 247-251 (available on line at http://falcon.bhpbilliton.com/docs/falcon_gravity_gradiometer_ technology.pdf). MATTHEWS, R. (2002): Mobile Gravity Gradiometry, PhD Thesis (University of Western Australia), (unpublished). REBHAN, H., M. AGUIRRE and J. JOHANNESSEN (2000): The gravity field and steady-state ocean explorer mission - GOCE, ESA Earth Observation Q., 66, 6-11. RICHTER, B. and R.J. WARBURTON (1998): A new generation of superconducting gravimeters, in Proceedings of the 13th International Symposium on Earth Tides, Série Géophysique, Royal Observatory of Belgium, Brussel, 545-556. SNADDEN, M.J., J.M. MCGUIRK, P. BOUYER, K.G. HARITOS and M.A. KASEVICH (1998): Measurement of the Earth’s gravity gradient with an atom interferometer-based gravity gradiometer, Phys. Rev. Lett., 81, 971-974. TOBAR, M.E., A.J. GILES, S. EDWARDS and J. SEARLS (1993): High Q TE stabilised sapphire microwave resonators for low noise applications, in Proc. IEEE Frequency Control Symposium, U.S.A. VAN KANN, F.J., M.J. BUCKINGHAM, C. EDWARDS and R. MATTHEWS (1994): Performances of a superconducting gravity gradiometer, Physica B, 194 and 196, 61-62.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorBertolini, A.en
dc.contributor.authorBeverini, N.en
dc.contributor.authorDe Michele, A.en
dc.contributor.authorFidecaro, F.en
dc.contributor.authorMango, F.en
dc.contributor.departmentDipartimento di Fisica «E. Fermi», Università degli Studi di Pisa, and Istituto Nazionale di Fisica della Materia (INFM), CNR, Pisa, Italyen
dc.contributor.departmentDipartimento di Fisica «E. Fermi», Università degli Studi di Pisa, and Istituto Nazionale di Fisica della Materia (INFM), CNR, Pisa, Italyen
dc.contributor.departmentDipartimento di Fisica «E. Fermi», Università degli Studi di Pisa, and Istituto Nazionale di Fisica della Materia (INFM), CNR, Pisa, Italyen
dc.contributor.departmentDipartimento di Fisica «E. Fermi», Università degli Studi di Pisa, and Istituto Nazionale di Fisica della Materia (INFM), CNR, Pisa, Italyen
dc.contributor.departmentDipartimento di Fisica «E. Fermi», Università degli Studi di Pisa, and Istituto Nazionale di Fisica della Materia (INFM), CNR, Pisa, Italyen
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypearticle-
item.grantfulltextopen-
crisitem.author.deptDipartimento di Fisica «E. Fermi», Università degli Studi di Pisa, and Istituto Nazionale di Fisica della Materia (INFM), CNR, Pisa, Italy-
crisitem.author.deptUNIPI-
crisitem.author.deptDipartimento di Fisica «E. Fermi», Università degli Studi di Pisa, and Istituto Nazionale di Fisica della Materia (INFM), CNR, Pisa, Italy-
crisitem.author.deptUniversità di Pisa-
crisitem.author.deptDipartimento di Fisica «E. Fermi», Università degli Studi di Pisa, and Istituto Nazionale di Fisica della Materia (INFM), CNR, Pisa, Italy-
crisitem.author.orcid0000-0002-2868-4235-
crisitem.author.orcid0000-0002-6189-3311-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
16.pdf609.29 kBAdobe PDFView/Open
Show simple item record

Page view(s) 50

156
checked on Jul 3, 2022

Download(s) 20

257
checked on Jul 3, 2022

Google ScholarTM

Check