Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/2037
DC FieldValueLanguage
dc.contributor.authorallChave, A. D.; Deep Submergence Laboratory, Woods Hole Oceanographic Institution, Woods Hole, MA, U.S.A.en
dc.contributor.authorallMassion, G.; Monterey Bay Aquarium Research Institute, Moss Landing, CA, U.S.A.en
dc.contributor.authorallMikada, H.; Department of Civil and Earth Resources Engineering, Kyoto University, Japanen
dc.date.accessioned2007-01-25T14:38:00Zen
dc.date.available2007-01-25T14:38:00Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/2037en
dc.description.abstractThe ocean sciences are beginning a new phase in which scientists will enter the ocean environment and adaptively observe the Earth-Ocean system through remote control of sensors and sensor platforms. This new ocean science paradigm will be implemented using innovative facilities called ocean observatories which provide unprecedented levels of power and communication to access and manipulate real-time sensor networks deployed within many different environments in the ocean basins. Most of the principal design drivers for ocean observatories differ from those for commercial submarine telecommunications systems. First, ocean observatories require data to be input and output at one or more seafloor nodes rather than at a few land terminuses. Second, ocean observatories must distribute a lot of power to the seafloor at variable and fluctuating rates. Third, the seafloor infrastructure for an ocean observatory inherently requires that the wet plant be expandable and reconfigurable. Finally, because the wet communications and power infrastructure is comparatively complex, ocean observatory infrastructure must be designed for low life cycle cost rather than zero maintenance. The origin of these differences may be understood by taking a systems engineering approach to ocean observatory design through examining the requirements derived from science and then going through the process of iterative refinement to yield conceptual and physical designs. This is illustrated using the NEPTUNE regional cabled observatory power and data communications sub-systems.en
dc.format.extent634588 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofseries2-3/49 (2006)en
dc.subjectocean observatoryen
dc.subjectscience requirementsen
dc.titleScience requirements and the design of cabled ocean observatoriesen
dc.typearticleen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.99. General or miscellaneousen
dc.relation.referencesAUSTIN, T.C., J.B. EDSON, W.R. MCGILLIS, M. PURCELL, R.A. PETITT JR., M.K. MCELROY, C.W. GRANT, J. WARE and S.K. HURST (2002): A network-based telemetry architecture developed for the Martha’s Vineyard Coastal Observatory, IEEE J. Ocean. Eng., 27, 228-234. BERANZOLI, L.,A. DE SANTIS, G. ETIOPE, P. FAVALI, F. FRUGONI, G. SMRIGLIO, F. GASPARONI and A. MARIGO (1998): GEOSTAR: a GEophysical and Oceanographic STation for Abyssal Research, Phys. Earth Planet. Inter., 108, 175-183. BERANZOLI, L., T. BRAUN, M. CALCARA, P. CASALE, A. DE SANTIS, G. D’ANNA, D. DI MAURO, G. ETIOPE, P. FAVALI, J.-L. FUDA, F. FRUGONI, F. GAMBERI, M. MARANI, C. MILLOT, C. MONTUORI and G. SMRIGLIO (2003): Mission results from the first GEOSTAR Observatory (Adriatic Sea, 1998), Earth Planets Space, 55, 361-374. BLANCHARD, B.S. (1998): System Engineering Management (John Wiley, New York), 2nd edition. CHAVE, A.D., F.K. DUENNEBIER, R. BUTLER, R.A. PETITT, JR., F.B. WOODING, D. HARRIS, J.W. BAILEY, E. HOBART, J. JOLLY,A.D. BOWEN and D.R. YOERGER (2002): H2O: the Hawaii-2 Observatory, in Science-Technology Synergy for Research in the Marine Environment: Challenges for the XXI Century, edited by L. BERANZOLI, P. FAVALI and G. SMRIGLIO, Developments in Marine Technology Series (Elsevier, Amsterdam), 12, 83-92. CHAVE, A.D., G. WATERWORTH, A.R. MAFFEI and G. MASSION (2004): Cabled ocean observatory systems, Mar. Technol. Soc. J., 38, 31-43. CLARK, H.L. and A. ISERN (2003): Cabled observatories for ocean research: a component of the Ocean Observatories Initiative, in Proceedings of the 3rd International Workshop on Scientific Use of Submarine Cables and Related Technologies (IEEE, Piscataway), 209-214. DELANEY, J.R., G.R. HEATH, B. HOWE, A.D. CHAVE and H. KIRKHAM (2000): NEPTUNE: real-time ocean and Earth sciences at the scale of a tectonic plate, Oceanography, 13, 71-83. DEWEY, R. and V. TUNNICLIFFE (2003): VENUS: future science on a coastal mid-depth observatory, in Proceedings of the 3rd International Workshop on Scientific Use of Submarine Cables and Related Technologies (IEEE, Piscataway), 232-233. EISNER, H. (1997): Essentials of Project and Systems Engineering Management (John Wiley, New York). FAVALI, P., G. SMRIGLIO, L. BERANZOLI, T. BRAUN, M. CALCARA, G. D’ANNA,A. DE SANTIS, D. DIMAURO, G. ETIOPE, F. FRUGONI, V. IAFOLLA, S. MONNA, C. MONTUORI, S. NOZZOLI, P. PALANGIO and G. ROMEO (2002): Towards a permanent deep-sea observatory: the GEO-STAR European experiment, in Science-Technology Synergy for Research in the Marine Environment: Challenges for the XXI Century, edited by L. BERANZOLI, P. FAVALI and G. SMRIGLIO, Developments in Marine Technology Series (Elsevier, Amsterdam), 12, 111-120. GLENN, S.M., T.D. DICKEY, B. PARKER and W. BOICOURT (2000): Long-term real-time coastal ocean observation networks, Oceanography, 13, 24-34. HIRATA, K., M. AOYAGI, H. MIKADA, K. KAWAGUCHI,Y. KAIHO, R. IWASE, S. MORITA, I. FUJISAWA, H. SUGIOKA, K. MITSUZAWA, K. SUYEHIRO, H. KINOSHITA and N. FUJIAWARA (2002): Real-time geophysical measurements on the deep seafloor using submarine cable in the Southern Kurile subduction zone, IEEE J. Ocean Eng., 27, 170-181. HOWE, B.M., H. KIRKHAM and V. VORPERIAN (2002): Power system considerations for undersea observatories, IEEE J. Ocean Eng., 27, 267-274. KASAHARA, J.,Y. SHIRASAKI and H. MOMMA (2000): Multidisciplinary geophysical measurement on the ocean floor using decommissioned submarine cables: VENUS project, IEEE J. Ocean Eng., 25, 111-120. MAFFEI, A., J. BAILEY, A. BRADLEY, A.D. CHAVE, X. GARCIA, H. GELMAN, S. LERNER, G. MASSION and D. YOERGER (2003):A modular gigabit Ethernet backbone for NEPTUNE and other ocean observatories, in Proceedings of the 3rd International Workshop on Scientific Use of Submarine Cables and Related Technologies (IEEE, Piscataway), 191-196. MILITARY STANDARD 499B (1991): Systems Engineering (US Department of Defense, Washington DC). MOMMA, H., R. IWASE, K. MITSUZAWA, Y. KAIHO and Y. FUJIWARA (1998): Preliminary results of a three-year continuous observation by a deep seafloor observatory in Sagami Bay, Central Japan, Phys. Earth Planet. Inter., 108, 263-274. NEPTUNE CONSORTIUM (2000): NEPTUNE Feasibility Study (available on line: http://www.neptune.washington.edu/ pub/documents/documents.html), pp. 106. PETITT, R.A., F.B. WOODING, D. HARRIS, J.W. BAILEY, E. HOBART, J. JOLLY, A.D. CHAVE, F.K. DUENNEBIER and R. BUTLER (2002): The Hawaii-2 Observatory, IEEE J. Ocean Eng., 27, 245-253. SCHOFIELD, O., T. BERGMANN, P. BISSETT, J.F. GRASSLE, D.B. HAIDVOGEL, J. KOHUT, M. MOLINE and S.M. GLENN (2002): The long-term ecosystem observatory: an integrated coastal observatory, IEEE J. Ocean Eng., 27, 146-154, SHIRASAKI, Y., M. YOSHIDA, T. NISHIDA, K. KAWAGUCHI, H. MIKADA and K. ASAKAWA (2003): ARENA: a versatile and multidisciplinary scientific submarine cable network of next generation, in Proceedings of the 3rd International Workshop on Scientific Use of Submarine Cables and Related Technologies (IEEE, Piscataway), 226-231. ST. ARNAUD, B., A.D. CHAVE, A. MAFFEI, E. LASZOWKA, L.SMARR and G. GOPALAN (2004): An integrated approach to ocean observatory data acquisition/management and infrastructure control using web services, Mar. Techol. Soc. J., 38, 155-163. STEVENS, R., P. BROOK, K. JACKSON and S. ARNOLD (1998): Systems Engineering (Pearson, Prentice Hall, London). THIEL, H., K.-O. KIRSTEIN, C. LUTH, U. LUTH, G. LUTHER, L.-A. MEYER-REIL, O. PFANNKUCHE and M. WEYDERT (1994): Scientific requirements for an abyssal benthic laboratory, J. Mar. Syst., 4, 421-439.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorChave, A. D.en
dc.contributor.authorMassion, G.en
dc.contributor.authorMikada, H.en
dc.contributor.departmentDeep Submergence Laboratory, Woods Hole Oceanographic Institution, Woods Hole, MA, U.S.A.en
dc.contributor.departmentMonterey Bay Aquarium Research Institute, Moss Landing, CA, U.S.A.en
dc.contributor.departmentDepartment of Civil and Earth Resources Engineering, Kyoto University, Japanen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDeep Submergence Laboratory, Woods Hole Oceanographic Institution, Woods Hole, MA, U.S.A.-
crisitem.author.deptMonterey Bay Aquarium Research Institute, Moss Landing, CA, U.S.A.-
crisitem.author.deptDepartment of Civil and Earth Resources Engineering, Kyoto University, Japan-
crisitem.classification.parent03. Hydrosphere-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
02 chave.pdf619.71 kBAdobe PDFView/Open
Show simple item record

Page view(s) 50

157
checked on Apr 20, 2024

Download(s) 5

1,794
checked on Apr 20, 2024

Google ScholarTM

Check