Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1980
DC FieldValueLanguage
dc.contributor.authorallLombardo, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallMerucci, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallBuongiorno, M. F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2006-12-07T14:41:50Zen
dc.date.available2006-12-07T14:41:50Zen
dc.date.issued2006-02en
dc.identifier.urihttp://hdl.handle.net/2122/1980en
dc.description.abstractThe thermal model proposed by Crisp and Baloga (1990) for active lava flows considers thermal flux as a function of the fractional area of two thermally distinct radiant surfaces. In this model, the larger surface area corresponds to the cooler crust of the flow and the other, much smaller to fractures in the crust. These cracks temperature is much higher than the crust one and approaches the temperature of the molten or plastic interior flow. The dual-band method needs two distinct SWIR (short wave infrared) bands to formulate a two equations system from the simultaneous solution of the Planck equation in each band. The system solutions consist in the crust temperature and the fractional area of the hot component. The dual band technique originally builds on data acquired by sensors (such as Landsat TM) with two SWIR bands only. The use of hyperspectral imaging spectrometers allows us to test the dual-band technique using different wavelengths in the SWIR range of the spectrum. DAIS 7915 is equipped with 40 bands into the range 1.54-2.49 nm which represent potential input in dual band calculation. This study aims to compare results derived by inserting assorted couples of wavelengths into the equation system. The analysis of these data provides useful information on dual-band technique accuracy.en
dc.format.extent2776503 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofseries1/49 (2006)en
dc.subjectremote sensingen
dc.subjectvolcanoesen
dc.subjectdual-banden
dc.subjectDAIS sensoren
dc.subjecthyperspectral analysisen
dc.titleWavelength influence in sub-pixel temperature retrieval using the dual-band techniqueen
dc.typearticleen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methodsen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.relation.referencesARCHAMBAULT, C. and J.C. TANGUY (1976): Comparative temperature measurements on Mount Etna lavas: problems and thecniques, J. Volcanol. Geotherm. Res., 1, 113-125. CALVARI, S., M. COLTELLI, M. NERI, M. POMPILIO and V. SCRIBANO (1994): The 1991-1993 Etna eruption: chronology and geological observations, Acta Vulcanol., 4, 1-14. CHESTER, D.K., A.M. DUNCAN, J.E. GUEST and C.R.J. KILBURN (1985): Mount Etna: the Anatomy of a Volcano (Stanford University Press), pp. 404. CRISP, J. and S. BALOGA (1990): A model for lava flows with two thermal componets, J. Geophys. Res., 95, 1255-1270. DOZIER, J. (1981): A method for satellite identification of surface temperature fields of subpixel resolution, Remote Sensing Environ., 11, 221-229. FLYNN, L.P., A.J.L. HARRIS and R. WRIGHT (2001): Improved identification of volcanic features using Landsat 7 ETM+, Remote Sensing Environ., 78, 180-193. GNV (1996): Global Volcanism Network (GNV), Etna, Smithson. Inst. Bull. Global Volcan. Network, 07/96 (BGVN 21:07). GNV (1999): Global Volcanism Network (GNV), Etna, Smithson. Inst. Bull. Global Volcan. Network, 06/99 (BGVN 24:06). HARRIS, A.J.L., L.P. FLYNN, D.A. ROTHERY, C. OPPENHEIMER and S.B. SHERMAN (1999): Mass flux measurements at active lava lakes: implications for magma recycling, J. Geophys. Res., 104, 7117-7136. OPPENHEIMER, C. (1991): Lava flow cooling estimated from Landsat Thematic Mapper infrared data: the Lonquimay eruption (Chile, 1989), J. Geophys. Res., 96, 21865-21878. OPPENHEIMER, C. (1993a): Infrared surveillance of crater lakes using satellite data, J. Volcanol. Geotherm. Res., 55, 117-128. OPPENHEIMER, C. (1993b): Thermal distributions of hot volcanic surfaces constrained using three infrared bands of remote sensing data, Geophys. Res. Lett., 20 (6), 431- 434. OPPENHEIMER, C., P.W. FRANCIS, D.A. ROTHERY, R.W.T. CARLTON and L. GLAZE (1993a): Infrared image analysis of volcanic thermal features: Làscar Volcano, Chile, 1984-1992, J. Geophys. Res., 98, 4269-4286. OPPENHEIMER, C., D.A. ROTHERY and P.W. FRANCIS (1993b): Thermal distribution at fumarole fields: implications for infrared remote sensing of active volcanoes, J. Volcanol. Geotherm. Res., 55, 97-115. OPPENHEIMER, C., D.A. ROTHERY, D.C. PIERI, M.J. ABRAMS and V. CARRERE (1993c): Analysis of Airborne Visible/ Infrared Imaging Spectrometer (AVIRIS) data of volcanic hot spots, Int. J. Remote Sensing, 14 (16), 2919- 2934. PIERI, D.C., L.S. GLAZE and M.J. ABRAMS (1990): Thermal radiance observation of an active lava flow during th June 1984 eruption of Mt. Etna, Geology, 18, 1018- 1022. WOOSTER, M.J., T. KANEKO, S. NAKADA and H. SHIMIZU (2000): Discimination of lava dome activity styles using satellite-derived thermal structurs, J. Vulcanol. Geotherm. Res., 102, 97-118. WRIGHT, R., P.F. FLYNN and A.J.L. HARRIS (2001): Evolution of lava flow-fields at Mount Etna, 27-28 October 1999, observed by Landsat 7 ETM+, Bull. Vucanol., 63, 1-7.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorLombardo, V.en
dc.contributor.authorMerucci, L.en
dc.contributor.authorBuongiorno, M. F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypearticle-
item.grantfulltextopen-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0001-6910-8800-
crisitem.author.orcid0000-0002-6095-6974-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
25 Lombardo.pdf2.71 MBAdobe PDFView/Open
Show simple item record

Page view(s)

140
checked on Jun 30, 2022

Download(s) 50

164
checked on Jun 30, 2022

Google ScholarTM

Check