Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1978
DC FieldValueLanguage
dc.contributor.authorallRiaza, A.; Instituto Geológico y Minero de España (IGME), Madrid, Spainen
dc.contributor.authorallGarcia-Melendez, E.; Área de Geodinámica Externa, Facultad de Ciencias Ambientales, Universidad de León, Spainen
dc.contributor.authorallSuárez, M.; Departamento de Geología, Universidad de Salamanca, Spainen
dc.contributor.authorallHausold, A.; DLR_German Aerospace Research Establishment, Remote Sensing Data Centre, Oberpfaffenhofen, Wessling, Deutschlanden
dc.contributor.authorallBeisl, U.; DLR_German Aerospace Research Establishment, Remote Sensing Data Centre, Oberpfaffenhofen, Wessling, Deutschlanden
dc.contributor.authorallvan der Werff, H.; International Institute for Aerospace Survey and Earth Sciences (ITC), Enschede, The Netherlandsen
dc.date.accessioned2006-12-07T14:41:30Zen
dc.date.available2006-12-07T14:41:30Zen
dc.date.issued2006-02en
dc.identifier.urihttp://hdl.handle.net/2122/1978en
dc.description.abstractWetlands are particularly sensitive environments receiving attention from the natural sciences community due to their wealth of both flora and fauna, and often considered as natural parks. In the Tablas de Daimiel (La Mancha, Central Spain), Digital Airborne Imaging Spectrometer data (DAIS 7915) have been analyzed to map geological processes on areas around the receding wetland which have never been flooded by water in the past. Sediments permanently exposed to the atmosphere dehydrate and oxide, developing different mineralogical associations arranged on planation surfaces. Such planation surfaces are key in the geological knowledge of recent climate change and landscape evolution. Progressive iron oxide/hydroxide rate and decarbonation can be spectrally followed on the Holocene sands framing the current marshy area. Such mineralogical changes are geologically registered on flat surfaces at different heights over the receding shore of the paleolake. Interacting erosion and sedimentation processes are responsible for the development of the flat morphological surfaces with increasing dryness. Maps are built for four different morphological units consisting of planation surfaces following chronologically the receding marsh during the last 2000 years before the present. Interactive spectral responses of mineralogical associations are described on the imagery, field and laboratory spectra.en
dc.format.extent1315272 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofseries1/49 (2006)en
dc.subjecthyperspectralen
dc.subjectiron bearing mineralsen
dc.subjectpaleoclimateen
dc.titleMapping of semi-arid iron bearing red sands on emerged areas around lake marshes (Tablas de Daimiel, Spain) using hyperspectral DAIS 7915 spectrometer dataen
dc.typearticleen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatologyen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methodsen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.03. Geomorphologyen
dc.relation.referencesABRAMS, M., E. ABBOTT and A. KAHLE (1991): Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows, J. Geophys. Res., 96 (B1), 475-484. AMOS, B.J. and D. GREENBAUM (1989): Alteration detection using TM imagery. The effects of supergene weathering in an arid climate, Int. J. Remote Sensing, 10 (3), 515-527. BOARDMAN, J.W. and F.A. KRUSE (1994): Automated spectral analysis: a geologic example using AVIRIS data, north Grapevine Mountains, Nevada, in Proceedings of the Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, I-407-I-418. BUCKINGHAM,W.F. and S.E. SOMMER (1983): Mineralogical characterization of rock surfaces formed by hydrothermal alteration and weathering. Application to remote sensing, Econ. Geol., 78, 664-674. DUCHAUFOUR, Ph. (1984): Edafogénesis y Clasificación (Masson Ed., Barcelona), tomo 1, pp. 493. EL BAZ, F. and D.J PRESTEL (1980): Desert varnish on sand grains from the Western Desert of Egypt: importance of the clay component and implications to Mars, in Lunar and Planetary Science XI, Houston, Texas (Lunar and Planetary Institute), Part I, 254-256. FARRAND, W.H. (1997): Identification and mapping of ferric oxide and oxyhydroxide minerals in imaging spectrometer data of Summitville, Colorado, U.S.A., and the surrounding San Juan Mountains, Int. J. Remote Sensing, 18 (7), 1543-1552. GARCÍA ANTÓN, M., C. MORLA, B. RUIZ ZAPATA and H. SAIS OLLERO (1986): Contribución al conocimiento del paisaje vegetal Holoceno en la Submeseta Sur Ibérica: análisis polínico de sedimentos higroturbosos en el Campo de Calatrava (Ciudad Real, España), in Quaternary Climate in Western Mediterranean, edited by F. LÓPEZ VERA (Universidad Autónoma de Madrid Publications). HUNT, G.R. and R.P. ASHLEY (1979): Spectra of altered rocks in the visible and near-infrared, Econ. Geol., 74, 1613-1629. HUNT, G.R. and J.W. SALISBURY (1971): Visible and nearinfrared spectra of minerals and rocks, II. Carbonates, Mod. Geol., 2, 23-30. HUNT, G.R., J.W. SALISBURY and J. LENHOF (1971): Visible and near-infrared spectra of minerals and rocks, III. Oxides and hydroxides, Mod. Geol., 2, 191-205. KAHLE, A.B., A.R. GILLESPIE, E.A. ABBOTT, M.J. ABRAMS, R.E. WALKER and G. HOOVER (1988): Relative dating of Hawaiian lava flows using multispectral themal infrared images: a new tool for geologic mapping of young volcanic terranes, J. Geophys. Res., 93 (B12), 15239-15251. LOGAN, R.F. (1960): The Central Namib Desert, N.A.S., N.R.C. Publ., 785, pp. 162. LYON, R.S.P. (1997): Weathering products and other coatings on rock surfaces: problems with airborne scanner imagery (RSS97-112), in 23rd Annual Conference and Exhibition of the Remote Sensing Society, 2-4 September 1997, The University of Reading, 54-59. MADEIRA, J., A. BEDIDI, B. CERVELLE, M. PUGET and N. FLAY (1997): Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: the application of a Thematic Mapper (TM) image for soilmapping in Brasilia, Brazil, Int. J. Remote Sensing, 18 (13), 2835-2852. MUNSELL, COLOR CO. (1950, revised 1990): Munsell Soil Color Charts, Munsell Color, Macbecth Division of Kollmorgen Corporation, Baltimore, MD. PONTUAL, A. (1987): The effect of weathering minerals on the spectral response of rocks in Landsat Thematic Mapper imagery, in Proceedings of the 13th Annual Conference of the Remote Sensing Society, 7-11 September 1987, Nottingham, 549-558. RIAZA, A., R. MEDIAVILLA, J.I. SANTISTEBAN, P. VILLAR and S. MARTIN ALFAGEME (1995): Regolitos en una cuenca en función de la evolución climática, in Coloquio Internacional sobre Propiedades Espectrales y Teledetección de los Suelos y Rocas del Visible al Infrarrojo Medio, 24-27 April 1995, La Serena (Chile), 100-104. RIAZA, A., H. KAUFMANN, A. ZOCK and A. MÜLLER (1998): Mineral Mapping in Maktesh-Ramon (Israel) using DAIS 7915, in Proceedings 1st Workshop on «Imaging Spectroscopy», 6-8 October 1998, Zürich, Switzerland, 365-374. RIAZA, A., R. MEDIAVILLA and J.I. SANTISTEBAN (2000): Mapping geological stages of climate-dependent iron and clay weathering alteration and lithologically uniform sedimentary units using Thematic Mapper imagery, Int. J. Remote Sensing, 21 (5), 937-950. RIAZA, A., P. STROBL, A. MÜLLER, U. BEISL and A. HAUSOLD (2001): Spectral mapping of rock weathering degrees on granite using hyperspectral DAIS 7915 Spectrometer Data, Int. J. Appl. Earth Obs. Geoinf., 3 (4), 2001, 345-354. RIAZA, A., R. MEDIAVILLA, E. GARCÍA-MELÉNDEZ, M. SUÁREZ, A. HAUSOLD, U. BEISL and H. VAN DER WERFF (2002): Mapping paleoflooded areas on evaporite playa deposits over sandy sediments (Tablas de Daimiel, Spain) using hyperspectral DAIS 7915 and ROSIS spectrometer data, in Proceedings of the 1st International Symposium Recent Advances in Quantitative Remote Sensing, Torrent, Spain, 16-20 September 2002; in Recent Advances in Quantitative Remote Sensing, edited by J.A. SOBRINO, 371-379. RICHTER, R. (1996): Atmospheric correction of DAIS hyperspectral image data, Comput. Geosci., 22 (7), 785-793. RICHTER, R. and C. COLL (2002): Bandpass-resampling effects for the retrieval of surface emissivity, Appl. Optics, 41, 3523-3529. RICHTER, R., A. MÜLLER and U. HEIDEN (2002): Aspects of operational atmospheric correction of hyperspectral imagery, Int. J. Remote Sensing, 23 (10), 145-158. ROWAN, L.C., A.F.H. GOETZ and R.P. ASHLEY (1977): Discrimination of hydrothermally altered and unaltered rocks in the visible and near infrared multispectral images, Geophysics, 42 (3), 522-535. RSI (2000): ENVI, the Environment for Visualizing Images Manual (Research Systems, Inc.). SCHLÄPFER, D. and R. RICHTER (2002): Geo-atmospheric processing of airborne imaging spectrometry data, Part 1. Parametric ortho-rectification process, Int. J. Remote Sensing, 23 (13), 2609-2630. SEGAL, D.B. (1983): Use of Landsat multispectral scanner data for the definition of limonitic exposures in heavily vegetated areas, Econ. Geol., 78, 711-722. STROBL, P., R. RICHTER, F. LEHMAN,A. MÜLLER, B. ZHUKOV and D. OERTEL (1996): Preprocessing for the Digital Airborne Imaging Spectrometer DAIS 7915, in SPIE’s AEROSENSE ‘96 Conference, April 8-12, 1996, Orlando, SPIE Proc., 2758, 375-382. TOWNSEND, T.E. (1987): Discrimination of iron alteration minerals in visible and near-infrared reflectance data, J. Geophys. Res., 92 (B2), 1441-1454. YOUNIS, M.T., A.A., GILABERT and J. MELIÁ (1997):Weathering process effects on spectral reflectance of rocks in a semi-arid environment, Int. J. Remote Sensing, 18 (16), 3361-3377.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorRiaza, A.en
dc.contributor.authorGarcia-Melendez, E.en
dc.contributor.authorSuárez, M.en
dc.contributor.authorHausold, A.en
dc.contributor.authorBeisl, U.en
dc.contributor.authorvan der Werff, H.en
dc.contributor.departmentInstituto Geológico y Minero de España (IGME), Madrid, Spainen
dc.contributor.departmentÁrea de Geodinámica Externa, Facultad de Ciencias Ambientales, Universidad de León, Spainen
dc.contributor.departmentDepartamento de Geología, Universidad de Salamanca, Spainen
dc.contributor.departmentDLR_German Aerospace Research Establishment, Remote Sensing Data Centre, Oberpfaffenhofen, Wessling, Deutschlanden
dc.contributor.departmentDLR_German Aerospace Research Establishment, Remote Sensing Data Centre, Oberpfaffenhofen, Wessling, Deutschlanden
dc.contributor.departmentInternational Institute for Aerospace Survey and Earth Sciences (ITC), Enschede, The Netherlandsen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptInstituto Geológico y Minero de España (IGME), Madrid, Spain-
crisitem.author.deptÁrea de Geodinámica Externa, Facultad de Ciencias Ambientales, Universidad de León, Spain-
crisitem.author.deptDepartamento de Geología, Universidad de Salamanca, Spain-
crisitem.author.deptDLR_German Aerospace Research Establishment, Remote Sensing Data Centre, Oberpfaffenhofen, Wessling, Deutschland-
crisitem.author.deptDLR_German Aerospace Research Establishment, Remote Sensing Data Centre, Oberpfaffenhofen, Wessling, Deutschland-
crisitem.author.deptInternational Institute for Aerospace Survey and Earth Sciences (ITC), Enschede, The Netherlands-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
27 Riaza.pdf1.28 MBAdobe PDFView/Open
Show simple item record

Page view(s)

161
checked on Apr 17, 2024

Download(s) 50

278
checked on Apr 17, 2024

Google ScholarTM

Check