Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1959
DC FieldValueLanguage
dc.contributor.authorallCiraolo, G.; Dipartimento di Ingegneria Idraulica ed Applicazioni Ambientali, Università degli Studi di Palermo, Italyen
dc.contributor.authorallCox, E.; Dipartimento di Ingegneria Idraulica ed Applicazioni Ambientali, Università degli Studi di Palermo, Italyen
dc.contributor.authorallLa Loggia, G.; Dipartimento di Ingegneria Idraulica ed Applicazioni Ambientali, Università degli Studi di Palermo, Italyen
dc.contributor.authorallMaltese, A.; Dipartimento di Ingegneria Idraulica ed Applicazioni Ambientali, Università degli Studi di Palermo, Italyen
dc.date.accessioned2006-12-07T14:38:19Zen
dc.date.available2006-12-07T14:38:19Zen
dc.date.issued2006-02en
dc.identifier.urihttp://hdl.handle.net/2122/1959en
dc.description.abstractThe aim of this research is to use hyperspectral MIVIS data to map the Posidonia oceanica prairies in a coastal lagoon (Stagnone di Marsala). It is approximately 12 km long and 2 km wide and is linked to the open sea by two shallow openings. This environment is characterised by prairies of phanerogams, the most common of which is Posidonia oceanica, an ideal habitat for numerous species of fish, molluscs and crustaceans. A knowledge of the distribution of submerged vegetation is useful to monitor the health of the lagoon. In order to classify the MIVIS imagery, the attenuation effects of the water column have been removed from the signal using Lyzenga’s technique. A comparison between classifications using indices obtained using band pairs from only the first spectrometer, and using band pairs of the first and second spectrometers, shows that the best classification is obtained from some indices derived from the first spectrometer. Field controls carried out in July 2002 were used to determine the training sites for the supervised classification. Twelve classes of bottom coverage were obtained from the classification, of which four are homogeneous and eight are mixed coverage. The methodology applied demonstrates that hyperspectral sensors can be used to effectively map submerged vegetation in shallow waters.en
dc.format.extent2748158 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofseries1/49 (2006)en
dc.subjectwater column correctionen
dc.subjectshallow wateren
dc.subjecthyperspectral imageryen
dc.subjectsubmerged vegetationen
dc.titleThe classification of submerged vegetation using hyperspectral MIVIS dataen
dc.typearticleen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystemsen
dc.relation.referencesACKLESON, S.G. and V. KLEMAS (1987): Remote sensing of submerged vegetation in lower Chesapeake Bay: a comparison of Landsat MSS to TM imagery, Remote Sensing Environ., 22, 235-248. ARMSTRONG, R.A. (1993): Remote sensing of submerged vegetation canopies for biomass estimation, Int. J. Remote Sensing, 14, 621-627. BALZANO, A., G. CIRAOLO, G. LA LOGGIA and G. VIVIANI (2001): Using hydrodynamic-transport numerical models and remote sensing to manage coastal lagoon environments, presented at the III International Symposium on Environmental Hydraulics, 5-8 December 2001, Tempe (Arizona). BEN MOUSSA, H., M. VIOLLIER and T. BELSHER (1989): Télédétection des algues macrophytes de l’Archipel de Molène (France) Radiométrie de terrain et application aux données du satellite SPOT, Int. J. Remote Sensing, 10 (1), 53-69. CALVO, S., D. DRAGO and M. SORTINO (1980): Winter and summer submersed vegetation maps of the Stagnone (western coast of Sicily), Rev. Biol.-Ecol. Méditerr., 7 (2), 89-96. DIERSSEN, H.M., R.C. ZIMMERMAN, R.A. LEATHERS, T.V. DOWNES and C.O. DAVIS (2003): Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imagery, Limnol. Oceanogr., 48 (1), 444-455. DURAND, D., J. BIJAOUI and F. CAUNEAU (2000): Optical remote sensing of shallow-water environmental parameters: a feasibility study, Remote Sensing Environ., 73, 152-161. EDWARDS, A.J. and P.J. MUMBY (1999): Compensating for variable water depth to improve mapping of underwater habitats: why it is necessary, in Applications of Satellite and Airborne Image Data to Coastal Management, edited by A.J. EDWARDS (UNESCO, Paris), 121-136. FERGUSON, R.L. and K. KORFMACHER (1997): Remote sensing and GIS analysis of seagrass meadows in North Carolina, U.S.A., Aquat. Bot., 58, 241-258. HOLDEN, H. and E. LEDREW (2002): Measuring and modeling water column effects on hyperspectral reflectance in a coral reef environment, Remote Sensing Environ., 81 (2-3), 300-308. JAIN, S.G. and J.R. MILLER (1977): Algebraic expression for the diffuse irradiance reflectivity of water from the two-flow model, Appl. Opt., 16 (1), 202-204. LOUCHARD, E.M., R.P. REID, F.C. STEPHENS, C.O. DAVIS, R.A. LEATHERS and T.V. DOWNES (2003): Optical remote sensing of benthic habitats and bathymetry in coastal environments at Lee Stocking Island, Bahamas: a comparative spectral classification approach, Limnol. Oceanogr., 48 (1), 511-521. LYZENGA, D.R. (1978): Passive remote sensing techniques for mapping water depth and bottom features, Appl. Opt., 17 (3), 379-383. LYZENGA, D.R. (1981): Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data, Int. J. Remote Sensing, 2 (1), 71-82. MUMBY, P.J., C.D. CLARK, E.P. GREEN and A.J. EDWARDS (1998): Benefits of water column correction and contextual editing for mapping coral reefs, Int. J. Remote Sensing, 19 (1), 203-210.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorCiraolo, G.en
dc.contributor.authorCox, E.en
dc.contributor.authorLa Loggia, G.en
dc.contributor.authorMaltese, A.en
dc.contributor.departmentDipartimento di Ingegneria Idraulica ed Applicazioni Ambientali, Università degli Studi di Palermo, Italyen
dc.contributor.departmentDipartimento di Ingegneria Idraulica ed Applicazioni Ambientali, Università degli Studi di Palermo, Italyen
dc.contributor.departmentDipartimento di Ingegneria Idraulica ed Applicazioni Ambientali, Università degli Studi di Palermo, Italyen
dc.contributor.departmentDipartimento di Ingegneria Idraulica ed Applicazioni Ambientali, Università degli Studi di Palermo, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Ingegneria di Palermo, Palermo Civile, Ambientale, Aerospaziale, dei Materiali, Università-
crisitem.author.deptDipartimento di Ingegneria Idraulica ed Applicazioni Ambientali, Università degli Studi di Palermo, Italy-
crisitem.author.deptDipartimento di Ingegneria Idraulica ed Applicazioni Ambientali, Università degli Studi di Palermo, Italy-
crisitem.author.orcid0000-0002-2778-4680-
crisitem.classification.parent03. Hydrosphere-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
32 Ciraolo.pdf2.68 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

215
checked on Apr 17, 2024

Download(s) 5

1,062
checked on Apr 17, 2024

Google ScholarTM

Check