Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1952
DC FieldValueLanguage
dc.contributor.authorallBarbarella, M.; Dipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio (DISTART), Università degli Studi di Bologna, Italyen
dc.contributor.authorallGordini, C.; Dipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio (DISTART), Università degli Studi di Bologna, Italyen
dc.date.accessioned2006-12-07T14:36:30Zen
dc.date.available2006-12-07T14:36:30Zen
dc.date.issued2006-02en
dc.identifier.urihttp://hdl.handle.net/2122/1952en
dc.description.abstractAs a result of the catastrophic hydrogeological events which occurred in May 1998 in Campania, in the south of Italy, the distinctive features of airborne laser scanning mounted on a helicopter were used to survey the landslides at Sarno and Quindici. In order to survey the entire zone of interest, approximately 21 km2, it was necessary to scan 12 laser strips. Many problems arose during the survey: difficulties in receiving the GPS signal, complex terrain features and unfavorable atmospheric conditions. These problems were investigated and it emerged that one of the most influential factors is the quality of GPS signals. By analysing the original GPS data, the traces obtained by fixing phase ambiguity with an On The Fly (OTF) algorithm were isolated from those with smoothed differential GPS solution (DGPS). Processing and analysis of laser data showed that not all the overlapping laser strips were congruent with each other. Since an external survey to verify the laser data accuracy was necessary, it was decided to utilize the kinematic GPS technique. The laser strips were subsequently adjusted, using the kinematic GPS data as reference points. Bearing in mind that in mountainous areas like the one studied here it is not possible to obtain nominal precision and accuracy, a good result was nevertheless obtained with a Digital Terrain Model (DTM) of all the zones of interest.en
dc.format.extent3940911 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofseries1/49 (2006)en
dc.subjectLIDARen
dc.subjectGPSen
dc.subjectDTMen
dc.subjectlandslide bodyen
dc.subjectSarnoen
dc.titleKinematic GPS survey as validation of LIDAR strips accuracyen
dc.typearticleen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoringen
dc.relation.referencesAL-BAYARI, O. (2000): Some problems in kinematic airborne laser survey, in Reports on Geodesy 6th Geodetic Millennium Meeting Poland-Italy. AXELSSON, P. (1999): Processing of laser scanner data, algorithms and applications, ISPRS J. Photogramm. Remote Sensing, 54 (2-3), 138-147. BALTSAVIAS, E. (1999): Airborne laser scanning: basic relations and formulas, ISPRS J. Photogramm. Remote Sensing, 54 (2-3), 199-214. BARBARELLA, M. (1992): Uso del GPS per l’inquadramento delle reti, Boll. SIFET, 4, 49-68. BARBARELLA, M. and C. FAZIO (2001): A procedure of the classification and editing of laser data in order to obtain DTMs of landslide, in Workshop on 3D Digital Imaging and Modeling Application of Heritage, Industry, Medicine and Land, 2-4. BARBARELLA, M., C. GORDINI and V. LENZI (2002): Analisi di un blocco di strisciate laser scanning, in Atti della VI Conferenza ASITA, 299-306. BURMAN, H. (2000): Adjustment of laser scanner data for correction of orientation errors, in XIX ISPRS Congress, Commission III, 16-22 July, Amsterdam, The Netherlands, ISPRS Arch., XXXIII (B3/1), 119-126. CASELLA, V. and A. SPALLA (2000): Estimation of planimetric accuracy of laser scanning data. Proposal of method exploiting ramps, in XIX ISPRS Congress, Commission III, 16-22 July, Amsterdam, The Netherlands, ISPRS Arch., XXXIII (B3/1), 157-163. MAAS, H.G. (2000): Least-squares matching with airborne laser scanning data in a tin structure, in XIX ISPRS Congress, Commission III, 16-22 July, Amsterdam, The Netherlands, ISPRS Arch., XXXIII (B3/1), 548-555. VARNES, D.J. (1978): Slope Movement types and processes, in Landslides – Analysis and Control, edited by R.L. SCHUSTER and R.J. KRIZEK, National Academy of Sciences Transportation Research Board, Special Rep. No. 176, 12-33. VOSSELMAN, G. (2002): On the estimation of planimetric offsets in laser altimetry data, in ISPRS Commission III, Symposium 2002, September 9-13, 2002, Graz, Austria, ISPRS Arch., XXXIV (3A), 375-380.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorBarbarella, M.en
dc.contributor.authorGordini, C.en
dc.contributor.departmentDipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio (DISTART), Università degli Studi di Bologna, Italyen
dc.contributor.departmentDipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio (DISTART), Università degli Studi di Bologna, Italyen
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypearticle-
item.grantfulltextopen-
crisitem.author.deptDipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio (DISTART), Università degli Studi di Bologna, Italy-
crisitem.author.deptDipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio (DISTART), Università degli Studi di Bologna, Italy-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
03 Barbarella.pdf3.85 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

187
checked on Jun 30, 2022

Download(s) 20

416
checked on Jun 30, 2022

Google ScholarTM

Check