Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/17258
DC FieldValueLanguage
dc.date.accessioned2024-07-12T10:17:54Z-
dc.date.available2024-07-12T10:17:54Z-
dc.date.issued2015-01-16-
dc.identifier.urihttp://hdl.handle.net/2122/17258-
dc.description.abstractWe consider statistical-mechanics models for spin systems built on hierarchical structures, which provide a simple example of non-mean-field framework. We show that the coupling decay with spin distance can give rise to peculiar features and phase diagrams much richer than their mean-field counterpart. In particular, we consider the Dyson model, mimicking ferromagnetism in lattices, and we prove the existence of a number of metastabilities, beyond the ordered state, which become stable in the thermodynamic limit. Such a feature is retained when the hierarchical structure is coupled with the Hebb rule for learning, hence mimicking the modular architecture of neurons, and gives rise to an associative network able to perform single pattern retrieval as well as multiple-pattern retrieval, depending crucially on the external stimuli and on the rate of interaction decay with distance; however, those emergent multitasking features reduce the network capacity with respect to the mean-field counterpart. The analysis is accomplished through statistical mechanics, Markov chain theory, signal-to-noise ratio technique, and numerical simulations in full consistency. Our results shed light on the biological complexity shown by real networks, and suggest future directions for understanding more realistic models.en_US
dc.language.isoEnglishen_US
dc.relation.ispartofPhysical review lettersen_US
dc.relation.ispartofseries/114 (2015)en_US
dc.subjectPhysics - Disordered Systems and Neural Networks; Physics - Disordered Systems and Neural Networks; Physics - Physics and Society; Quantitative Biology - Neurons and Cognitionen_US
dc.titleRetrieval capabilities of hierarchical networks: from Dyson to Hopfielden_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.description.pagenumber028103en_US
dc.identifier.doi10.1103/PhysRevLett.114.028103en_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn0031-9007en_US
dc.contributor.authorAgliari, Elena-
dc.contributor.authorBarra, Adriano-
dc.contributor.authorGalluzzi, Andrea-
dc.contributor.authorGuerra, Francesco-
dc.contributor.authorTantari, Daniele-
dc.contributor.authorTavani, Flavia-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
crisitem.author.deptSapienza Università di Roma-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-5121-3511-
crisitem.author.orcid0000-0001-9982-5720-
crisitem.author.orcid0009-0004-0315-9399-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Pubblicazione4_prl_Tavani.pdfRestricted file1.46 MBAdobe PDF
Show simple item record

Page view(s)

22
checked on Sep 11, 2024

Download(s)

1
checked on Sep 11, 2024

Google ScholarTM

Check

Altmetric