Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/17198
DC FieldValueLanguage
dc.date.accessioned2024-05-29T06:06:24Z-
dc.date.available2024-05-29T06:06:24Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/2122/17198-
dc.description.abstractWe developed a high-resolution magnetochronology of the Pleistocene stratigraphy of the Monte Netto hillock, a tectonically uplifted struc ture in the Po Plain of northern Italy. Our data allowed reconstructing the depositional age of the sequence and assessing rates of defor mation and rock uplift of the neotectonic structure, thus providing constraints on the tectono-sedimentary evolution of this seismically active part of the buried Southern Alps. Using a combination of magnetostratigraphy and paleosecular variation analysis, we generated an age-depth model for the Monte Netto stratigraphy that encompasses, from the top, Upper Pleistocene (11–72 ka) loess-paleosols over laying fluvial sediments spanning the Brunhes-Matuyama boundary (773 ka) and the top of the Jaramillo (990 ka). The identification of the same magneto-chronostratigraphic surfaces in nearby drill cores from regions of the Po Plain that have not been affected by neotectonic deformation allowed estimating a mean rate of tectonic uplift of the hillock relative to the neighboring plain of 11.3 ± 1.5 cm/ka, and an absolute uplift relative to sea level of ∼19.3 cm/ka. Finally, our paleomagnetic analyses from the uppermost loess sequence disclosed the complexity of the tectonic evolution of the Monte Netto structure, which shows evidence of a two-phase rotational deformation linked to coseismic surface faulting due to recent seismic activity.en_US
dc.language.isoEnglishen_US
dc.publisher.nameCambridge University Pressen_US
dc.relation.ispartofQuaternary Researchen_US
dc.relation.ispartofseries113(2023)en_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectMagnetochronologyen_US
dc.subjectPleistoceneen_US
dc.subjectPaleosecular variationsen_US
dc.subjectLoess-paleosolsen_US
dc.subjectNeotectonic deformationen_US
dc.subjectPo Plainen_US
dc.titleHigh-resolution magnetochronology detects multiple stages of Pleistocene tectonic uplift and deformation in the Po Plain of northern Italyen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber191-205en_US
dc.identifier.doi10.1017/qua.2022.67en_US
dc.relation.referencesBigi, G., Cosentino, D., Parotto, M., Sartori, R., Scandone, P., 1990. Structural Model of Italy. Firenze, Società Elaborazioni Cartografi che (S. EL.CA.), Consiglio Nazionale della Ricerche Progetto Finalizzato Geodinamica, scale 1:500,000, 9 sheets. Channell, J.E.T., Singer, B.S., Jicha, B.R., 2020. Timing of Quaternary geo magnetic reversals and excursions in volcanic and sedimentary archives. Quaternary Science Reviews 228, 106114. https://doi.org/10.1016/j.quas cirev.2019.106114. Delpiano, D., Peresani, M., Bertola, S., Cremaschi, M., Zerboni, A., 2019. Lashed by the wind: short-term Middle Palaeolithic occupations within the loess-palaeosoil sequence at Monte Netto (Northern Italy). Quaternary International 502, 137–147. Desio, A., 1965. I rilievi isolati della Pianura Lombarda ed i movimenti tetto nici del Quaternario. Rendiconti dell’Istituto Lombardo Accademia di Scienze e Lettere 99, 881–894. 204 S. Perini et al. https://doi.org/10.1017/qua.2022.67 Published online by Cambridge University Press Dunlop, D.J., 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research 107, B3, EPM 4-1–EPM 4-22. https://doi. org/10.1029/2001JB000486. Faccioli, E., 2013. Recent evolution and challenges in the seismic hazard anal ysis of the Po Plain region, Northern Italy. Bulletin of Earthquake Engineering 11, 5–33. Guidoboni, E., Comastri, A., 2005. Catalogue of Earthquakes and Tsunamis in the Mediterranean Area from the 11th to the 15th Century. Istituto Nazionale di Geofisica e Vulcanologia—Storia Geofisica Ambiente, Roma-Bologna, 1037 p. Gunderson, K.L., Pazzaglia, F.J., Picotti, V., Anastasio, D.A., Kodama, K.P., Rittenour, T., Frankel, K.F., et al., 2014. Unraveling tectonic and climatic controls on synorogenic growth strata (Northern Apennines, Italy). Geological Society of America Bulletin 126, 532–552. Hammer, Ø., Harper, D.A.T., and Ryan, P.D., 2001, PAST: paleontological statistics software package for education and data analysis: Palaeontologia Electronica, v. 4. http://palaeo-electronica.org/2001_1/past/issue1_01.htm. Harrison, R.J., Feinberg, J.M., 2008. FORCinel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochemistry, Geophysics, Geosystems 9, Q05016. https://doi.org/10.1029/2008GC001987. ISIDe Working Group, 2007. Italian Seismological Instrumental and Parametric Data-Base (ISIDe). Istituto Nazionale di Geofisica e Vulcanologia. https://doi.org/10.13127/ISIDE. Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal International 62, 699–718. Kruiver, P.P., Dekkers, M.J., Heslop, D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth and Planetary Science Letters 189, 269–276. Lehmkuhl, F., Nett, J.J., Pötter, S., Schulte, P., Sprafke, T., Jary, Z., Antoine, P., et al., 2021. Loess landscapes of Europe—mapping, geomorphology and zonal differentiation. Earth-Science Reviews 215, 103496. https://doi.org/10. 1016/j.earscirev.2020.103496. Liu, J., Nowaczyk, N. R., Panovska, S., Korte, M., Arz, H. W., 2020. The Norwegian-Greenland Sea, the Laschamps, and the Mono Lake excursions recorded in a Black Sea sedimentary sequence spanning from 68.9 to 14.5 ka. Journal of Geophysical Research: Solid Earth 125, e2019JB019225. https://doi.org/10.1029/2019JB019225. Liu, P., Hirt, A.M., Schüler, D., Uebe, R., Zhu, P., Liu, T., Zhang, H., 2019. Numerical unmixing of weakly and strongly magnetic minerals: examples with synthetic mixtures of magnetite and hematite. Geophysical Journal International 217, 280–287. Livio, F.A., Berlusconi, A., Michetti, A.M., Sileo, G., Zerboni, A., Trombino, L., Cremaschi, M., et al., 2009. Active fault-related folding in the epicentral area of the December 25, 1222 (Io = IX MCS) Brescia earthquake (Northern Italy): seismotectonic implications. Tectonophysics 476, 320–335. Livio, F.A., Berlusconi, A., Zerboni, A., Trombino, L., Sileo, G., Michetti, A.M., Rodnight, H., Spötl, C., 2014. Progressive offset and surface deforma tion along a seismogenic blind thrust in the Po Plain foredeep (Southern Alps, Northern Italy). Journal of Geophysical Research Solid Earth 119, 7701–7721. Livio, F.A., Ferrario, M. F., Frigerio, C., Zerboni, A., Michetti, A. M., 2020. Variable fault tip propagation rates affected by near-surface lithology and implications for fault displacement hazard assessment. Journal of Structural Geology 130, 103914. https://doi.org/10.1016/j.jsg.2019.103914. Livio, F.A., Kettermann, M., Reicherter, K., Urai, J. L., 2019. Growth of bending-moment faults due to progressive folding: insights from sandbox models and paleoseismological implications. Geomorphology 326, 152–166. Lougheed, B.C., Obrochta, S. P., 2019. A rapid, deterministic age-depth mod eling routine for geological sequences with inherent depth uncertainty. Paleoceanography and Paleoclimatology 34, 122–133. Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coer civity and unblocking temperature properties. Geophysical Research Letters 17, 159–162. Maesano, F.E., D’Ambrogi, C., Burrato, P., Toscani, G., 2015. Slip-rates of blind thrusts in slow deforming areas: examples from the Po Plain (Italy). Tectonophysics 643, 8–25. McElhinny, M.W., McFadden, P.L., 1997. Palaeosecular variation over the past 5 Myr based on a new generalized database. Geophysical Journal International 131, 240–252. Michetti A.M., Giardina F., Livio F., Mueller K., Serva L., Sileo G., Vittori E., et al., 2012. Active compressional tectonics, Quaternary capable faults, and the seismic landscape of the Po Plain (N Italy). Annals of Geophysics 55, 969–1001. Monesi, E., Muttoni, G., Scardia, G., Felletti, F., Bona, F., Sala, B., Tremolada, F., Francou, C., Raineri, G., 2016. Insights on the opening of the Galerian mammal migration pathway from magnetostratigraphy of the Pleistocene marine-continental transition in the Arda River section (northern Italy). Quaternary Research 86, 220–231. Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., Rogledi, S., Sciunnach, D., 2003. Onset of major Pleistocene glaciations in the Alps. Geology 31,1): 989–992. Panovska, S., Korte, M., Liu, J., Nowaczyk, N., 2021. Global evolution and dynamics of the geomagnetic field in the 15–70 kyr period based on selected paleomagnetic sediment records. Journal of Geophysical Research: Solid Earth 126, e2021JB022681. https://doi.org/10.1029/2021JB022681. Roberts, A.P., Heslop, D., Zhao, X., Pike, C.R., 2014. Understanding fine magnetic particle systems through use of first-order reversal curve diagrams. Reviews of Geophysics 52, 557–602. Roberts, A.P., Pike, C.R., Verosub, K.L., 2000. First-order reversal curve dia grams: a new tool for characterizing the magnetic properties of natural sam ples. Journal of Geophysical Research 105, 28,461–28,475. Scardia, G., De Franco, R., Muttoni, G., Rogledi, S., Caielli, G., Carcano, C., Sciunnach, D., Piccin, A., 2012. Stratigraphic evidence of a Middle Pleistocene climate-driven flexural uplift in the Alps. Tectonics 31, TC6004. https://doi.org/10.1029/2012TC003108. Scardia, G., Muttoni, G., Sciunnach, D., 2006. Subsurface magnetostratigra phy of Pleistocene sediments from the Po Plain (Italy): constraints on rates of sedimentation and rock uplift. Geological Society of America Bulletin 118, 1299–1312. Tauxe, L., Kent, D.V., 2004. A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: was the ancient magnetic field dipolar? In: Channell, J., Kent, D., Lowrie, W., Meert, J. (Eds.), Timescales of The Paleomagnetic Field. Geophysical Monograph Series 145. https://doi.org/10.7916/D81N89JT. Vanini, M., Corigliano, M., Faccioli, E., Figini, R., Luzi, L., Pacor, F., Paolucci, R., 2018. Improving seismic hazard approaches for critical infra structures: a pilot study in the Po Plain. Bulletin of Earthquake Engineering 16, 2529–2564. Vigliotti, L., 2006. Secular variation record of the Earth’s magnetic field in Italy during the Holocene: constraints for the construction of a master curve. Geophysical Journal International 165, 414–429. Zerboni, A., Trombino, L., Frigerio, C., Livio, F., Berlusconi, A., Michetti, A. M., Rodnight, H., Spötl, C., 2015. The loess-paleosol sequence at Monte Netto: a record of climate change in the Upper Pleistocene of the central Po Plain, northern Italy. Journal of Soils and Sediments 15, 1329–1350. Pleistocene uplift and deformation, Po Plain, Italy 205en_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn0033-5894en_US
dc.contributor.authorPerini, Serena-
dc.contributor.authorMuttoni, Giovanni-
dc.contributor.authorLivio, Franz-
dc.contributor.authorZucali, Michele-
dc.contributor.authorMichetti, Alessandro Maria-
dc.contributor.authorZerboni, Andrea-
dc.contributor.departmentDipartimento di Scienze della Terra ‘Ardito Desio’, Università degli Studi di Milano, via Luigi Mangiagalli 34, 20133 Milano, Italiaen_US
dc.contributor.departmentDipartimento di Scienze della Terra ‘Ardito Desio’, Università degli Studi di Milano, via Luigi Mangiagalli 34, 20133 Milano, Italiaen_US
dc.contributor.departmentDipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100, Como, Italiaen_US
dc.contributor.departmentDipartimento di Scienze della Terra ‘Ardito Desio’, Università degli Studi di Milano, via Luigi Mangiagalli 34, 20133 Milano, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentDipartimento di Scienze della Terra ‘Ardito Desio’, Università degli Studi di Milano, via Luigi Mangiagalli 34, 20133 Milano, Italiaen_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.deptDipartimento di Scienze della Terra ‘Ardito Desio’, Università degli Studi di Milano, via Luigi Mangiagalli 34, 20133 Milano, Italia-
crisitem.author.deptDipartimento di Scienze della Terra ‘Ardito Desio’, Università degli Studi di Milano, via Luigi Mangiagalli 34, 20133 Milano, Italia-
crisitem.author.deptUniversità dell'Insubria, Dipartimento di Scienza e Alta Tecnologia, Como, Italy-
crisitem.author.deptDipartimento di Scienze della Terra, Università degli Studi di Milano, Via Mangiagalli, 34, 20133 Milano, Italy-
crisitem.author.orcid0000-0002-6545-2193-
crisitem.author.orcid0000-0002-6684-7779-
crisitem.author.orcid0000-0002-1775-1340-
Appears in Collections:Article published / in press
Show simple item record

Page view(s)

31
checked on Sep 4, 2024

Download(s)

5
checked on Sep 4, 2024

Google ScholarTM

Check

Altmetric