Please use this identifier to cite or link to this item:
http://hdl.handle.net/2122/17042
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2024-05-02T09:44:29Z | - |
dc.date.available | 2024-05-02T09:44:29Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | http://hdl.handle.net/2122/17042 | - |
dc.description.abstract | Phlegraean Fields is a large, active caldera located in the densely populated westernmost sector of Naples’s Bay (Southern Italy). Several Bouguer anomaly surveys are available for this area with different resolution and accuracy; gravity data derive from the integration of stations placed below and above the sea level as the caldera develops both onshore and offshore. The comparison of these maps with the Digital Elevation Model shows a still remaining Terrain Effect hiding the shallower and deep caldera structure’s signal. This effect has an impact on the modelling of the gravity source’s depth and geometry. In this research, we apply a geologically constrained terrain correction method to the higher resolution Free Air dataset available for the study area to enhance the complete Bouguer reduction. The correlation analysis between the residual and the topography allows us to assess the quality of the outcomes. The results represent an improvement in the anomalies’ isolation and clearly show a continuous circular-like clustering of maxima related to the geometry of the caldera rim. The minima are associated with volcano-tectonic depression filled with pyroclastic and sediment. Furthermore, features alignments overlap the fault systems, along which the volcanic activity occurred. | en_US |
dc.language.iso | English | en_US |
dc.publisher.name | MDPI | en_US |
dc.relation.ispartof | Remote Sensing | en_US |
dc.relation.ispartofseries | 1/15 (2023) | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.subject | phlegraean fields; bouguer anomaly; gravimetric terrain correction; phlegraean fields | en_US |
dc.title | Bouguer Anomaly Re-Reduction and Interpretative Remarks of the Phlegraean Fields Caldera Structures (Southern Italy) | en_US |
dc.type | article | en |
dc.description.status | Published | en_US |
dc.type.QualityControl | Peer-reviewed | en_US |
dc.description.pagenumber | 209 | en_US |
dc.identifier.URL | https://www.mdpi.com/2072-4292/15/1/209# | en_US |
dc.subject.INGV | Phlegraean Fields Bouguer Anomalies | en_US |
dc.identifier.doi | 10.3390/rs15010209 | en_US |
dc.relation.references | 1. Gebauer, S.K.; Schmitt, A.K.; Pappalardo, L.; Stockli, D.F.; Lovera, O.M. Crystallization and eruption ages of Breccia Museo (Campi Flegrei caldera, Italy) plutonic clasts and their relation to the Campanian ignimbrite. Contrib. Mineral. Petrol. 2014, 167, 953. [CrossRef] 2. Deino, A.L.; Orsi, G.; de Vita, S.; Piochi, M. The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera–Italy) assessed by 40Ar/39Ar dating method. J. Volcanol. Geotherm. Res. 2004, 133, 157–170. [CrossRef] 3. Barberi, F.; Cassano, E.; la Torre, P.; Sbrana, A. Structural evolution of Campi Flegrei caldera in light of volcanological and geophysical data. J. Volcanol. Geotherm. Res. 1991, 48, 33–49. [CrossRef] 4. Di Vito, M.A.; Isaia, R.; Orsi, G.; Southon, J.; de Vita, S.; D’Antonio, M.; Pappalardo, L.; Piochi, M. Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 1999, 91, 221–246. [CrossRef] 5. Scandone, R.; Giacomelli, L.; Speranza, F. The volcanological history of the volcanoes of Naples: A review. Dev. Volcanol. 2006, 9, 1–26. 6. Albert, P.G.; Giaccio, B.; Isaia, R.; Costa, A.; Niespolo, E.M.; Nomade, S.; Smith, V.C. Evidence for a large-magnitude eruption from Campi Flegrei caldera (Italy) at 29 ka. Geology 2019, 47, 595–599. [CrossRef] 7. Fedi, M.; Nunziata, C.; Rapolla, A. The Campania-Campi Flegrei area: A contribution to discern the best structural model from gravity interpretation. J. Volcanol. Geotherm. Res. 1991, 48, 51–59. [CrossRef] 8. Nunziata, C.; Rapolla, A. Interpretation of gravity and magnetic data in the Phlegraean Fields geothermal area, Naples, Italy. J. Volcanol. Geotherm. Res. 1981, 10, 209–225. [CrossRef] 9. Cassano, E.; la Torre, P. Geophysics; Santacroce, R., Ed.; Somma-Vesuvius, Quaderni De La Ricerca Scientifica, 114, 8 Edited; Consiglio Nazionale delle Ricerche: Rome, Italy, 1987; pp. 175–195. 10. Rosi, M.; Sbrana, A. Phlegraean Fields: (CNR Quaderni de “La Ricerca Scientifica” 9); Consiglio Nazionale delle Ricerche: Rome, Italy, 1987; p. 175. 11. Florio, G.; Fedi, M.; Cella, F.; Rapolla, A. The Campanian Plain and Phlegrean Fields: Structural setting from potential field data. J. Volcanol. Geotherm. Res. 1999, 91, 361–379. [CrossRef] 12. Berrino, G.; Corrado, G.; Riccardi, U. Sea gravity data in the Gulf of Naples. A contribution to delineating the structural pattern of the Vesuvian area. J. Volcanol. Geotherm. Res. 1998, 82, 139–150. [CrossRef] 13. Berrino, G.; Corrado, G.; Riccardi, U. Sea gravity data in the Gulf of Naples. A contribution to delineating the structural pattern of the Phlegraean Volcanic District. J. Volcanol. Geotherm. Res. 2008, 175, 241–252. [CrossRef] 14. Judenherc, S.; Zollo, A. The Bay of Naples (southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey. J. Geophys. Res. Solid Earth 2004, 109. [CrossRef] 15. Zollo, A.; Maercklin, N.; Vassallo, M.; Iacono, D.D.; Virieux, J.; Gasparini, P. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys. Res. Lett. 2008, 35, 12. [CrossRef] 16. De Siena, L.; del Pezzo, E.; Bianco, F. Seismic attenuation imaging of Campi Flegrei: Evidence of gas reservoirs, hydrothermal basins, and feeding systems. J. Geophys. Res. Solid Earth 2010, 115, B09312. [CrossRef] 17. Calò, M.; Tramelli, A. Anatomy of the Campi Flegrei caldera using enhanced seismic tomography models. Sci. Rep. 2018, 8, 16254. [CrossRef] 18. Capuano, P.; Russo, G.; Civetta, L.; Orsi, G.; D’Antonio, M.; Moretti, R. The active portion of the Campi Flegrei caldera structure imaged by 3-D inversion of gravity data. Geochem. Geophys. Geosystems 2013, 14, 4681–4697. [CrossRef] 19. Imbò, G. Considerazioni sismo-gravimetriche sulle manifestazioni vesuviane del maggio 1964. In Proceedings of the XIV Convegno nazionale Associazione Geofisica Italiana, Naples, Italy, 1965; pp. 291–300. 20. Maino, A. Rilevamento Gravimetrico di Dettaglio dell’isola D’Ischia. Boll. Serv. Geol. It. 1971, 92. 21. Hinze, W.J.; von Frese, R.R.B.; Saad, A.H. Gravity and Magnetic Exploration: Principles, Practices, and Applications; Cambridge University Press: Cambridge, UK, 2013. 22. Vitale, S.; Isaia, R. Fractures and faults in volcanic rocks (Campi Flegrei, southern Italy): Insight into volcano-tectonic processes. Int. J. Earth Sci. 2014, 103, 801–819. [CrossRef] 23. Steinmann, L.; Spiess, V.; Sacchi, M. The Campi Flegrei caldera (Italy): Formation and evolution in interplay with sea-level variations since the Campanian Ignimbrite eruption at 39 ka. J. Volcanol. Geotherm. Res. 2016, 327, 361–374. [CrossRef] 24. Piochi, M.; Kilburn, C.R.J.; di Vito, M.A.; Mormone, A.; Tramelli, A.; Troise, C.; de Natale, G. The volcanic and geothermally active Campi Flegrei caldera: An integrated multidisciplinary image of its buried structure. Int. J. Earth Sci. 2014, 103, 401–421. [CrossRef] Remote Sens. 2023, 15, 209 21 of 23 25. De Bonitatibus, A.; Latmiral, G.; Mirabile, L. Rilievi sismici per riflessione: Strutturali, ecografici (fumarole) e batimetrici nel Golfo di Pozzuoli. Boll. Soc. Nat. Napoli 1970, 79, 15. 26. Mira Geoscience. Available online: https://mirageoscience.com (accessed on 1 October 2022). 27. Fullagar, P.K.; Pears, G.A.; Milkereit, B. Towards geologically realistic inversion. In Proceedings of the Exploration 07: Fifth Decennial International Conference on Mineral Exploration, Toronto, ON, Canada, 9–12 September 2007; pp. 444–460. 28. Carrozzo, M.T.; Luzio, D.; Margiotta, C.; Quarta, T. Gravity Anomaly Map of Italy. In CNR Progett Final Geodin Model Strutt Tridimensionale; CNR Edizioni: Rome, Italy, 1986. 29. Doglioni, C. A proposal for the kinematic modelling ofW-dipping subductions-possible applications to the Tyrrhenian-Apennines system. Terra Nova 1991, 3, 423–434. [CrossRef] 30. EMODnet Consortium. Available online: https://www.emodnet-bathymetry.eu/ (accessed on 1 October 2022). 31. Passaro, S.; Tamburrino, S.; Vallefuoco, M.; Gherardi, S.; Sacchi, M.; Ventura, G. High-resolution morpho-bathymetry of the Gulf of Naples, Eastern Tyrrhenian Sea. J. Maps 2016, 12, 203–210. [CrossRef] 32. D’Argenio, B.; Pescatore, T.; Scandone, P. Schema Geologico dell’Appennino Meriodionale (Campania e Lucania). Verl. Nicht Ermittelbar Atti Accad. Naz. Dei Lincei 1973, 183, 220–248. 33. Brocchini, D.; Principe, C.; Castradori, D.; Laurenzi, M.A.; Gorria, L. Quaternary evolution of the southern sector of the Campanian Plain and early Somma-Vesuvius activity: Insights from the Trecase 1 well. Miner. Pet. 2001, 73, 67–91. [CrossRef] 34. Bruno, P.P.G.; Cippitelli, G.; Rapolla, A. Seismic study of the Mesozoic carbonate basement around Mt. Somma-Vesuvius, Italy. J. Volcanol. Geotherm. Res. 1998, 84, 311–322. [CrossRef] 35. Piochi, M.; Bruno, P.P.; de Astis, G. Relative roles of rifting tectonics and magma ascent processes: Inferences from geophysical, structural, volcanological, and geochemical data for the Neapolitan volcanic region (southern Italy). Geochem. Geophys. Geosystems 2005, 6, Q07005. [CrossRef] 36. De Vivo, B.; Rolandi, G.; Gans, P.B.; Calvert, A.; Bohrson, W.A.; Spera, F.J.; Belkin, H.E. New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Miner. Pet. 2001, 73, 47–65. [CrossRef] 37. Di Vito, M.A.; Sulpizio, R.; Zanchetta, G.; D’Orazio, M. The late Pleistocene pyroclastic deposits of the Campanian Plain: New insights into the explosive activity of Neapolitan volcanoes. J. Volcanol. Geother. Res. 2008, 177, 19–48. [CrossRef] 38. Finetti, I.; Morelli, C. Esplorazione geofisica dell’aera mediterranea circostante il Blocco Sardo-Corso. In Paleogeografia Del Terziario Sardo Nell’ambito Del Mediterraneo Occidentale; Rendiconti del Seminario della Facoltà di Scienze—Università di Cagliari: Cagliari, Italy, 1974; Volume 43, pp. 213–238. 39. Milia, A.; Torrente, M.M. Fold uplift and synkinematic stratal architectures in a region of active transtensional tectonics and volcanism, eastern Tyrrhenian Sea. Geol. Soc. Am. Bull. 2000, 112, 1531–1542. [CrossRef] 40. Bruno, P.P.G.; Rapolla, A.; di Fiore, V. Structural setting of the Bay of Naples (Italy) seismic reflection data: Implications for Campanian volcanism. Tectonophysics 2003, 372, 193–213. [CrossRef] 41. Bruno, P.P.G. Structure and evolution of the Bay of Pozzuoli (Italy) using marine seismic reflection data: Implications for collapse of the Campi Flegrei caldera. Bull. Volcanol. 2004, 66, 342–355. [CrossRef] 42. Somma, R.; Iuliano, S.; Matano, F.; Molisso, F.; Passaro, S.; Sacchi, M.; de Natale, G. High-resolution morpho-bathymetry of Pozzuoli Bay, Southern Italy. J. Maps 2016, 12, 222–230. [CrossRef] 43. Cole, P.D.; Scarpati, C. A facies interpretation of the eruption and emplacement mechanisms of the upper part of the Neapolitan Yellow Tuff, Campi Flegrei, Southern Italy. Bull. Volcanol. 1993, 55, 311–326. [CrossRef] 44. Lirer, L.; Luongo, G.; Scandone, R. On the volcanological evolution of Campi Flegrei. Eos Trans. Am. Geophys. Union 1987, 68, 226–234. [CrossRef] 45. Orsi, G.; de Vita, S.; di Vito, M. The restless, resurgent Campi Flegrei nested caldera (Italy): Constraints on its evolution and configuration. J. Volcanol. Geotherm. Res. 1996, 74, 179–214. [CrossRef] 46. Fedele, L.; Scarpati, C.; Sparice, D.; Perrotta, A.; Laiena, F. A chemostratigraphic study of the Campanian Ignimbrite eruption (Campi Flegrei, Italy): Insights on magma chamber withdrawal and deposit accumulation as revealed by compositionally zoned stratigraphic and facies framework. J. Volcanol. Geotherm. Res. 2016, 324, 105–117. [CrossRef] 47. Rolandi, G.; Bellucci, F.; Heizler, M.T.; Belkin, H.E.; de Vivo, B. Tectonic controls on the genesis of ignimbrites from the Campanian. Volcanic Zone, Southern Italy. Miner. Pet. 2003, 79, 3–31. [CrossRef] 48. Rolandi, G.; de Natale, G.; Kilburn, C.R.J.; Troise, C.; Somma, R.; di Lascio, M.; Fedele, A.; Rolandi, R. The 39 ka Campanian Ignimbrite eruption: New data on source area in the Campanian Plain. In Vesuvius, Campi Flegrei, and Campanian Volcanism; Elsevier: Amsterdam, The Netherlands, 2020; pp. 175–205. 49. Isaia, R.; Marianelli, P.; Sbrana, A. Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka BP: Implications for caldera dynamics and future eruptive scenarios. Geophys. Res. Lett. 2009, 36, 21. [CrossRef] 50. D’antonio, M.; Civetta, L.; Orsi, G. The present state of the magmatic system of the Campi Flegrei caldera based on a reconstruction of its behavior in the past 12 ka. J. Volcanol. Geotherm. Res. 1999, 91, 247–268. [CrossRef] 51. Insinga, D.; Calvert, A.T.; Lanphere, M.A.; Morra, V.; Perrotta, A.; Sacchi, M.; Scarpati, C.; Saburomaru, J.; Fedele, L. The Late-Holocene evolution of the Miseno area (south-western Campi Flegrei) as inferred by stratigraphy, petrochemistry and 40Ar/39Ar geochronology. In Developments in Volcanology; Elsevier: Amsterdam, The Netherlands, 2006; pp. 97–124. Remote Sens. 2023, 15, 209 22 of 23 52. Fedele, L.; Insinga, D.D.; Calvert, A.T.; Morra, V.; Perrotta, A.; Scarpati, C. 40 Ar/39 Ar dating of tuff vents in the Campi Flegrei caldera (Southern Italy): Toward a new chronostratigraphic reconstruction of the Holocene volcanic activity. Bull. Volcanol. 2011, 73, 1323–1336. [CrossRef] 53. Sacchi, M.; Pepe, F.; Corradino, M.; Insinga, D.D.; Molisso, F.; Lubritto, C. The Neapolitan Yellow Tuff caldera offshore the Campi Flegrei: Stratal architecture and kinematic reconstruction during the last 15ky. Mar. Geol. 2014, 354, 15–33. [CrossRef] 54. Sacchi, M.; Passaro, S.; Molisso, F.; Matano, F.; Steinmann, L.; Spiess, V.; Pepe, F.; Corradino, M.; Caccavale, M.; Taburrino, S.; et al. The Holocene Marine Record of Unrest, Volcanism, and Hydrothermal Activity of Campi Flegrei and Somma–Vesuvius: Vesuvius, Campi Flegrei, and Campanian Volcanism; Elsevier: Amsterdam, The Netherlands, 2020; pp. 435–469. 55. De Natale, G.; Troise, C.; Mark, D.; Mormone, A.; Piochi, M.; di Vito, M.A.; Isaia, R.; Carlino, S.; Barra, D.; Somma, R. The Campi Flegrei Deep Drilling Project (CFDDP): New insight on caldera structure, evolution and hazard implications for the Naples area (Southern Italy). Geochem. Geophys. Geosystems 2016, 17, 4836–4847. [CrossRef] 56. Perrotta, A.; Scarpati, C. The dynamics of the Breccia Museo eruption (Campi Flegrei, Italy) and the significance of spatter clasts associated with lithic breccias. J. Volcanol. Geotherm. 1994, 59, 335–355. [CrossRef] 57. Passaro, S.; Barra, M.; Saggiomo, R.; di Giacomo, S.; Leotta, A.; Uhle, H.; Mazzola, S. Multi-resolution morpho-bathymetric survey results at the Pozzuoli–Baia underwater archaeological site (Naples, Italy). J. Archaeol. Sci. 2013, 40, 1268–1278. [CrossRef] 58. Chiodini, G.; Frondini, F.; Cardellini, C.; Granieri, L.; Marini, L.; Ventura, G. CO2 degassing and energy release at Solfatara Volcano, Campi Flegrei, Italy. J. Geophys. Res. 2001, 106, 16213–16221. [CrossRef] 59. Chiodini, G. CO2/CH4 ratio in fumaroles a powerful tool to detect magma degassing episodes at quiescent volcanoes. Geophys Res. Lett. 2009, 36. [CrossRef] 60. Acocella, V. Activating and reactivating pairs of nested collapses during caldera-forming eruptions: Campi Flegrei (Italy). Geophys. Res. Lett. 2008, 35. [CrossRef] 61. Tramelli, A.; Giudicepietro, F.; Ricciolino, P.; Chiodini, G. The seismicity of Campi Flegrei in the contest of an evolving long term unrest. Sci. Rep. 2022, 12, 2900. [CrossRef] 62. Di Luccio, F.; Pino, N.A.; Piscini, A.; Ventura, G. Significance of the 1982–2014 Campi Flegrei seismicity: Preexisting structures, hydrothermal processes, and hazard assessment. Geophys. Res. Lett. 2015, 42, 7498–7506. [CrossRef] 63. CRUST 1.0. A New Global Crustal Model at 1 1 Degrees. Available online: https://igppweb.ucsd.edu/~{}gabi/crust1.html (accessed on 19 January 2021). 64. Artemieva, I.M.; Mooney, W.D. Thermal thickness and evolution of Precambrian lithosphere: A global study. J. Geophys. Res. 2001, 106, 16387–16414. [CrossRef] 65. Vallius, H.T.V.; Kotilainen, A.T.; Asch, K.C.; Fiorentino, A.; Judge, M.; Stewart, H.A.; Pjetursson, B. Discovering Europe’s seabed geology: The EMODnet concept of uniform collection and harmonization of marine data. Geol. Soc. Spec. Publ. 2022, 505, 7–18. [CrossRef] 66. Passaro, S.; Genovese, S.; Sacchi, M.; Barra, M.; Rumolo, P.; Tamburino, S.; Mazzola, S.; Basilone, G.; Placenti, F.; Aronica, S.; et al. First hydroacoustic evidence of marine, active fluid vents in the Naples Bay continental shelf (Southern Italy). J. Volcanol. Geotherm. Res. 2014, 285, 29–35. [CrossRef] 67. Fullagar, P.K.; Pears, G.A.; McMonnies, B. Constrained inversion of geological surfaces-pushing the boundaries. Lead. Edge 2008, 27, 98–105. [CrossRef] 68. Carlino, S.; Somma, R.; Troise, C.; Natale, G. The geothermal exploration of Campanian volcanoes: Historical review and future development. Renew. Sustain. Energy Rev. 2012, 16, 1004–1030. [CrossRef] 69. Mallick, K.; Vasanthi, A.; Sharma, K.K. Bouguer Gravity Regional and Residual Separation: Application to Geology and Environment; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. 70. Chapin, D.A. A deterministic approach toward isostatic gravity residuals: A case study from South America. Geophysics 1996, 4, 1022–1033. [CrossRef] 71. Nettleton, L.L. Determination of density for reduction of gravimeter observations. Geophysics 1939, 4, 176–183. [CrossRef] 72. Thorarinsson, F.; Magnusson, S.G. Bouguer density determination by fractal analysis. Geophysics 1990, 55, 932–935. [CrossRef] 73. Caratori Tontini, F.; Graziano, F.; Cocchi, L.; Carmisciano, C.; Stefanelli, P. Determining the optimal Bouguer density for a gravity data set: Implications for the isostatic setting of the Mediterranean Sea. Geophys. J. Int. 2007, 169, 380–388. [CrossRef] 74. Cocchi, L.; Tontini, F.C.; Carmisciano, C.; Stefanelli, P.; Anzidei, M.; Esposito, A.; del Negro, C.; Greco, F.; Napoli, R. Looking inside the Panarea Island (Aeolian Archipelago, Italy) by gravity and magnetic data. Ann. Geophys 2008, 51, 25–38. [CrossRef] 75. Jilinski, P.; Fontes, S.L.; Meju, M.A. Estimating optimum density for regional Bouguer reduction by morphological correlation of gravity and bathymetric maps: Examples from offshore south-eastern Brazil. Geo-Mar. Lett. 2013, 33, 67–73. [CrossRef] 76. De Marchi, A.C.P.; Ghidella, M.E.; Tocho, C.N. Analysis of Different Methodologies to Calculate Bouguer Gravity Anomalies in the Argentine Continental Margin. Geosciences 2014, 4, 33–41. [CrossRef] 77. Scandone, R.; Bellucci, F.; Lirer, L.; Rolandi, G. The structure of the Campanian Plain and the activity of the Neapolitan volcanoes (Italy). J. Volcanol. Geotherm. Res. 1991, 48, 1–31. [CrossRef] 78. Sartori, R.; Torelli, L.; Zitellini, N.; Carrara, G.; Magaldi, M.; Mussoni, P. 2004. Crustal features along aW–E Tyrrhenian transect from Sardinia to Campania margins (Central Mediterranean). Tectonophysics 2004, 383, 171–192. [CrossRef] 79. Peccerillo, A.; Terre, A. Cenozoic Volcanism in the Tyrrhenian Sea Region; Springer: Berlin/Heidelberg, Germany, 2017. Remote Sens. 2023, 15, 209 23 of 23 80. Milia, A.; Torrente, M.M. Coeval Miocene development of thrust belt-backarc and forearc extension during the subduction of a continental margin (Western-Central Mediterranean Sea). J. Geodyn. 2022, 149, 101882. [CrossRef] 81. Gilbert, L.A.; McDuff, R.E.; Paul Johnson, H. Porosity of the upper edifice of Axial Seamount. Geology 2007, 35, 49–52. [CrossRef] 82. Zhu, Z.; Tian, H.; Jiang, G.; Dou, B. Effects of high temperature on rock bulk density. Geomech. Geoengin. 2022, 17, 647–657. [CrossRef] 83. Miller, C.A.; Williams-Jones, G. Internal structure and volcanic hazard potential of Mt Tongariro, New Zealand, from 3D gravity and magnetic models. J. Volcanol. Geotherm. Res. 2016, 319, 12–28. [CrossRef] 84. Luiso, P.; Paoletti, V.; Nappi, R.; la Manna, M.; Cella, F.; Gaudiosi, G.; Fedi, M.; Iorio, M. A multidisciplinary approach to characterize the geometry of active faults: The example of Mt. Massico, Southern Italy. Geophys. J. Int. 2018, 213, 1673–1681. [CrossRef] 85. Sbrana, A.; Marianelli, P.; Pasquini, G. The phlegrean fields volcanological evolution. J. Maps 2021, 17, 557–570. [CrossRef] 86. Bartole, R.; Savelli, D.; Tramontana, M.; Wezel, F.-C. 1984. Structural and sedimentary features in the Tyrrhenian margin off Campania, Southern Italy. Mar. Geol. 1984, 55, 163–180. [CrossRef] 87. Milia, A.; Torrente, M.M.; Russo, M.; Zuppetta, A. Tectonics and crustal structure of the Campania continental margin: Relationships with volcanism. Miner. Pet. 2003, 79, 33–47. [CrossRef] | en_US |
dc.description.obiettivoSpecifico | OSA1: Variazioni del campo magnetico terrestre, imaging crostale e sicurezza del territorio | en_US |
dc.description.obiettivoSpecifico | OSA4: Ambiente marino, fascia costiera ed Oceanografia operativa | en_US |
dc.description.journalType | JCR Journal | en_US |
dc.relation.issn | 2072-4292 | en_US |
dc.contributor.author | De Ritis, Riccardo | - |
dc.contributor.author | Cocchi, Luca | - |
dc.contributor.author | Passaro, Salvatore | - |
dc.contributor.author | Campagne, Thomas | - |
dc.contributor.author | Gabriellini, Gianluca | - |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia | en_US |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia | en_US |
dc.contributor.department | ISMAR-CNR National Research Council of Italy, 80133 Naples, Italy | en_US |
dc.contributor.department | Mira Geoscience Ltd., Vancouver, BC V6C 1T2, Canada | en_US |
dc.contributor.department | Eni Spa—Natural Resources, San Donato Milanese, 20097 Milan, Italy | en_US |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia | - |
crisitem.author.dept | Istituto per l’Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Napoli | - |
crisitem.author.dept | Mira Geoscience Ltd., Vancouver, BC V6C 1T2, Canada | - |
crisitem.author.dept | Eni Spa—Natural Resources, San Donato Milanese, 20097 Milan, Italy | - |
crisitem.author.orcid | 0000-0003-1771-0132 | - |
crisitem.author.orcid | 0000-0001-7835-1116 | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
Appears in Collections: | Article published / in press |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
De Ritis et al., 2022.pdf | Open Access Published Article | 3.95 MB | Adobe PDF | View/Open |
Page view(s)
45
checked on Sep 7, 2024
Download(s)
11
checked on Sep 7, 2024