Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/17014
DC FieldValueLanguage
dc.date.accessioned2024-04-30T10:27:14Z-
dc.date.available2024-04-30T10:27:14Z-
dc.date.issued2023-02-
dc.identifier.urihttp://hdl.handle.net/2122/17014-
dc.description9 pages, 6 figuresen_US
dc.description.abstractMany natural systems show emergent phenomena at different scales, leading to scaling regimes with signatures of deterministic chaos at large scales and an apparently random behavior at small scales. These features are usually investigated quantitatively by studying the properties of the underlying attractor, the compact object asymptotically hosting the trajectories of the system with their invariant density in the phase space. This multi-scale nature of natural systems makes it practically impossible to get a clear picture of the attracting set. Indeed, it spans over a wide range of spatial scales and may even change in time due to non-stationary forcing. Here, we combine an adaptive decomposition method with extreme value theory to study the properties of the instantaneous scale-dependent dimension, which has been recently introduced to characterize such temporal and spatial scale-dependent attractors in turbulence and astrophysics. To provide a quantitative analysis of the properties of this metric, we test it on the well-known low-dimensional deterministic Lorenz-63 system perturbed with additive or multiplicative noise. We demonstrate that the properties of the invariant set depend on the scale we are focusing on and that the scale-dependent dimensions can discriminate between additive and multiplicative noise despite the fact that the two cases have exactly the same stationary invariant measure at large scales. The proposed formalism can be generally helpful to investigate the role of multi-scale fluctuations within complex systems, allowing us to deal with the problem of characterizing the role of stochastic fluctuations across a wide range of physical systems.en_US
dc.language.isoEnglishen_US
dc.publisher.nameAIP Publishingen_US
dc.relation.ispartofChaosen_US
dc.relation.ispartofseries/33 (2023)en_US
dc.subjectNonlinear Sciences - Chaotic Dynamics; Nonlinear Sciences - Chaotic Dynamicsen_US
dc.titleScale dependence of fractal dimension in deterministic and stochastic Lorenz-63 systemsen_US
dc.typearticleen_US
dc.description.statusPublisheden_US
dc.description.pagenumber023144en_US
dc.identifier.doi10.1063/5.0106053en_US
dc.description.obiettivoSpecificoOSA2: Evoluzione climatica: effetti e loro mitigazioneen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn1054-1500en_US
dc.contributor.authorAlberti, Tommaso-
dc.contributor.authorFaranda, Davide-
dc.contributor.authorLucarini, V-
dc.contributor.authorDonner, Reik-
dc.contributor.authorDubrulle, B-
dc.contributor.authorDaviaud, F-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italiaen_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextreserved-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptMagdeburg-Stendal University of Applied Sciences-
crisitem.author.orcid0000-0001-6096-0220-
crisitem.author.orcid0000-0001-5001-5698-
crisitem.author.orcid0000-0001-7023-6375-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Alberti - Chaos (2023).pdf.3.07 MBAdobe PDF
Show simple item record

Page view(s)

32
checked on Sep 11, 2024

Download(s)

2
checked on Sep 11, 2024

Google ScholarTM

Check

Altmetric