Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/16839
DC FieldValueLanguage
dc.date.accessioned2024-03-11T07:38:57Z-
dc.date.available2024-03-11T07:38:57Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/2122/16839-
dc.description.abstractPrevious experiments highlighted the possible existence of a relation between repeatability of point clouds obtained from Structure-from-Motion photogrammetry (SfM), represented by the standard deviation (𝜎), and the nominal ground sampling distance (GSD). In particular, the empirical relation 3𝜎 ∌ 2.5 GSD was found. For this reason, in-situ tests aimed at studying this relation were carried out. Data from seven surveys carried out in 2018-2022 time span allowed the comparison between 20 pairs of almost contemporary point clouds, generated by means of relative bundle adjustment (BA) without ground control points (GCPs) and then relatively scaled and aligned. In this way, the relation 3𝜎 = aGSD was found, where a = 2.5 ± 0.4. This result also suggested the use of the reverse procedure, where the scale factor (SF) is estimated from the standard deviation of non-metric point clouds, 𝜎nmu, by using the relation SFa = aGSD/3𝜎nmu. Additional checks proved that SFa differs from SF by 3%. This error is not acceptable error for length, area or volume measurements, but the estimated SFa is more than adequate for a fast, rough registration of photogrammetric models aimed at searching patterns or precursors of incipient phenomena in impervious/inaccessible areas or in emergency conditions.en_US
dc.language.isoEnglishen_US
dc.publisher.nameINGVen_US
dc.relation.ispartofAnnals of Geophysicsen_US
dc.relation.ispartofseries5/66 (2023)en_US
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectSfMen_US
dc.subjectRelative bundle adjustmenten_US
dc.subjectScale factoren_US
dc.subjectUncertainty modelingen_US
dc.titlePoint clouds repeatability and fast scale factor estimates in free SfM surveying: terrestrial application and empirical approachen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumberRS529en_US
dc.identifier.doi10.4401/ag-9009en_US
dc.relation.referencesBrunier, G., J. Fleury, J.E. Anthony, V. Pothin, C. Vella, P. Dussouillez, A. Gardel and E. Michaud (2016). Structurefrom- Motion photogrammetry for high-resolution coastal and fluvial geomorphic surveys, GĂ©omorphologie, 22, 2, 147-161. https://doi.org/10.1007/978-3-319-58304-4_9. Cutugno, M., U. Robustelli and G. Pugliano (2022). Structure-from-Motion 3D Reconstruction of the Historical Overpass Ponte della Cerra: A Comparison between MicMacÂź Open Source Software and MetashapeÂź, Drones, 6, 9, 242, https://doi.org/10.3390/drones6090242. Eltner, A, A. Kaiser, C. Castillo, G. Rock, F. Neugirg and A. AbellĂĄn (2016). Image-based surface reconstruction in geomorphometry-merits, limits and developments, Earth Surf. Dyn., 4, 2, 359-389, https://doi.org/10.5194/ esurf-4-359-2016. Ente di gestione per i Parchi e la BiodiversitĂ  (2023). Contrafforte Pliocenico Nature Reserve web page. Available online at: https://enteparchi.bo.it/en/contrafforte-pliocenico-nature-reserve/ (accessed: November 23, 2023). MartĂ­nez-Carricondo, P., F. AgĂŒera-Vega, F. Carvajal-RamĂ­rez, F.‑J. Mesas-Carrascosa, A. GarcĂ­a-Ferrer and F.‑J. PĂ©rez‑Porras (2018). Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points, Int. J. Appl. Earth Obs. Geoinf., 72, 1-10, https://doi.org/10.1016/j.jag.2018.05.015. Mistretta, F., G. Sanna, F. Stochino and G. Vacca (2019). Structure from Motion Point Clouds for Structural Monitoring, Remote Sens., 11, 1940, https://doi.org/10.3390/rs11161940. Pesci, A., G. Teza, M. Bisson, F. Muccini, P. Stefanelli, M. Anzidei, R. Carluccio, I. Nicolosi, A. Galvani, V. Sepe and C. Carmisciano (2016). A fast method for monitoring the coast through independent photogrammetric measurements: application and case study, J. Geosci. Geomat., 4, 4, 73-81. https://doi.og/10.12691/jgg-4-4-1. Pesci, A., V. Kastelic, G. Teza, M. Carafa, P. Burrato and R. Basili (2018). Utilizzo della fotogrammetria SfM terrestre per il monitoraggio dei versanti: considerazioni sulle precisioni per applicazioni a lunga distanza, Rapporto tecnico INGV, 394, 1-20. Pesci, A., G. Teza and F. Loddo (2019). Low cost Structure-from-Motion-based fast surveying of a rock cliff: precision and reliability assessment, Quad. Geofis., INGV, 156, 1-22. https://doi.org/10.13127/qdg/156. Pesci, A., G. Teza, V. Kastelic and M.M.C. Carafa (2020). Resolution and precision of fast, long range terrestrial photogrammetric surveying aimed at detecting slope changes, J. Surv. Eng., 146, 4, 04020017-1-13. https:// doi.org/10.1061/(ASCE)SU.1943-5428.0000328. Pesci, A., G. Teza, F. Loddo, M. Fabris, M. Monego and S. Amoroso (2022). Studio di possibili effetti sistematici nelle nuvole di punti SfM da APR: confronti con TLS, distorsioni e metodi di mitigazione/Evaluation of possible systematic effects in SfM UAV based point clouds: TLS and surface variations for error mitigation methods, Quad. Geofis., INGV, 177, 1-22, https://doi.org/10.13127/qdg/177. Salas LĂłpez, R., R.E. Terrones Murga, J.O. Silva-LĂłpez, N.B. Rojas-Briceño, D. GĂłmez FernĂĄndez, M. Oliva-Cruz and Y. Taddia (2022). Accuracy Assessment of Direct Georeferencing for Photogrammetric Applications Based on UAS-GNSS for High Andean Urban Environments, Drones, 6, 12, 388, https://doi.org/10.3390/drones6120388. Sanz-Ablanedo, E., J.H. Chandler, J.R. RodrĂ­guez-PĂ©rez and C. Ordóñez (2018). Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used, Remote Sens., 10, 10, 1606, https://doi.org/10.3390/rs10101606. Yan, L., R. Chen, H. Sun, Y. Sun, L. Liu and Q. Wang (2017). A novel bundle adjustment method with additional ground control point constraint, Remote Sen. Lett., 8, 1, 68-77, https://doi.org/10.1080/2150704X.2016.1235809. Zhang, H., E. Aldana-Jague, F. Clapuyt, F. Wilken, V. Vanacker and K. Van Oost (2019). Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure- from-motion (SfM) photogrammetry and surface change detection, Earth Surf. Dyn., 7, 807-827, https://doi.org/10.5194/esurf-7-807-2019.en_US
dc.description.obiettivoSpecificoOST5 Verso un nuovo Monitoraggioen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn2037-416Xen_US
dc.contributor.authorPesci, Arianna-
dc.contributor.authorTeza, Giordano-
dc.contributor.authorLoddo, Fabiana-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen_US
dc.contributor.departmentDipartimento Fisica e Astronomia UniversitĂ  di Bolognaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0003-1863-3132-
crisitem.author.orcid0000-0002-6902-5033-
crisitem.author.orcid0000-0002-1153-1021-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
AG_2024_SfM and ScaleFactor.pdfOpen Access Published Article1.02 MBAdobe PDFView/Open
Show simple item record

Page view(s)

59
checked on Sep 7, 2024

Download(s)

3
checked on Sep 7, 2024

Google ScholarTM

Check

Altmetric