Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/16270
DC FieldValueLanguage
dc.date.accessioned2023-02-28T11:09:47Z-
dc.date.available2023-02-28T11:09:47Z-
dc.date.issued2022-02-01-
dc.identifier.urihttp://hdl.handle.net/2122/16270-
dc.description.abstractThis paper presents the study of NordicWalking providing objective evaluations based on real time acquisition of kinematic parameters during the sport practice. It is possible to carefully monitor the athletic gesture through the integration of conventional poles with inertial sensors, composed of a triaxial accelerometer, a triaxial gyroscope, a pressure sensor positioned on the handle, and a load cell, which constitute aWireless Sensor Networkwhose nodes are appropriately synchronized. The integration of such sensors, whichmust be unobstructive and not change the functionality of the poles, is dictated by the ultimate goal of providing a real time biofeedback in two possible scenarios. The first is intended for Nordic Walking’s instructors, who have the opportunity to verify the proper practice execution by their trainees through the availability of real time objective data, in addition to their personalexperience.The second is devoted to amateur playerswho can practicealone, after the training sessionwith the instructor, and can independently correct any imperfections in real time using a software tool running on their smartphone. Using the Dynamic TimeWarping algorithm, the proposed system identifies themost frequent errors in performing athletic gesture, allowing adjustment in real time of the sporting exercise, through the detection, quantification and correction of errors. The obtained results show that the developed system is able to provide an accurate analysis of the athletic gesture and the proposed algorithm allows a quantitative monitoring of the progress achieved by each subject over time.en_US
dc.language.isoEnglishen_US
dc.publisher.nameIEEEen_US
dc.relation.ispartofIEEE Sensors Journalen_US
dc.relation.ispartofseries/22 (2022)en_US
dc.rightsAttribution-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/us/*
dc.subjectActivity monitoringen_US
dc.subjectdata analyticsen_US
dc.subjectInternet Of Thingsen_US
dc.subjectsmart sport equipmentsen_US
dc.subjectwireless sensor networken_US
dc.titleActivity Monitoring Through Wireless Sensor Networks Embedded Into Smart Sport Equipments: The Nordic Walking Training Utilityen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber2744 - 2757en_US
dc.subject.INGV05.04. Instrumentation and techniques of general interesten_US
dc.identifier.doi10.1109/JSEN.2021.3136760en_US
dc.relation.references[1]O. D. Lara and M. A. Labrador, “A survey on human activity recognition using wearable sensors,” IEEE Commun. Surveys Tuts., vol. 15, no. 3, pp. 1192–1209, 3rd Quart. 2013. [2] E. De-La-Hoz-Franco, P. Ariza-Colpas, J. M. Quero, and M. Espinilla, “Sensor-based datasets for human activity recognition—A systematic review of literature,” IEEE Access, vol. 6, pp. 59192–59210, 2018. [3] P. Downward, K. Hallmann, and S. Rasciute, “Exploring the interrelationship between sport, health and social outcomes in the U.K.: Implications for health policy,” Eur. J. Public Health, vol. 28, no. 1, pp. 99–104, Feb. 2018. [4] J. Zhao and G. Li, “Study on real-time wearable sport health device based on body sensor networks,” Comput. Commun., vol. 154, pp. 40–47, Mar. 2020. [5] M. Magno, L. Benini, C. Spagnol, and E. Popovici, “Wearable low power dry surface wireless sensor node for healthcare monitoring application,” in Proc. IEEE 9th Int. Conf. Wireless Mobile Comput., Netw. Commun. (WiMob), Oct. 2013, pp. 189–195. [6] M. Al-Amri, K. Nicholas, K. Button, V. Sparkes, L. Sheeran, and J. L. Davies, “Inertial measurement units for clinical movement analysis: Reliability and concurrent validity,” Sensors, vol. 18, no. 3, p. 719, 2018. [7] J. Connolly, J. Condell, B. O’Flynn, J. T. Sanchez, and P. Gardiner, “IMU sensor-based electronic goniometric glove for clinical finger movement analysis,” IEEE Sensors J., vol. 18, no. 3, pp. 1273–1281, Nov. 2017. [8] P. Pierleoni et al., “A wearable fall detector for elderly people based on AHRS and barometric sensor,” IEEE Sensors J., vol. 16, no. 17, pp. 6733–6744, Sep. 2016. [9] P. Pierleoni, A. Belli, L. Palma, M. Pellegrini, L. Pernini, and S. Valenti, “A high reliability wearable device for elderly fall detection,” IEEE Sensors J., vol. 15, no. 8, pp. 4544–4553, Aug. 2015. [10] A. Agostinelli et al., “CaRiSMA 1.0: Cardiac risk self-monitoring assessment,” Open Sports Sci. J., vol. 10, no. 1, pp. 179–190, Oct. 2017. [11] C. Russo, F. Mocera, and A. Soma, “MEMS sensors for sport engineer applications,” Proc. IOP Conf. Ser., Mater. Sci. Eng., vol. 1038, no. 1, 2021, Art. no. 012056. [12] A. Ahmadi, D. D. Rowlands, and D. A. James, “Development of inertial and novel marker-based techniques and analysis for upper arm rotational velocity measurements in tennis,” Sports Eng., vol. 12, no. 4, pp. 179–188, Aug. 2010. [13] D. Connaghan, P. Kelly, N. E. O’Connor, M. Gaffney, M. Walsh, and C. O’Mathuna, “Multi-sensor classification of tennis strokes,” in Proc. IEEE SENSORS, Oct. 2011, pp. 1437–1440. [14] J. Chardonnens, J. Favre, F. Cuendet, G. Gremion, and K. Aminian, “A system to measure the kinematics during the entire ski jump sequence using inertial sensors,” J. Biomech., vol. 46, no. 1, pp. 56–62, Jan. 2013. [15] A. Ahmadi, F. Destelle, D. Monaghan, N. E. O’Connor, C. Richter, and K. Moran, “A framework for comprehensive analysis of a swing in sports using low-cost inertial sensors,” in Proc. IEEE SENSORS, Nov. 2014, pp. 2211–2214. [16] A. Umek, Y. Zhang, S. Tomažiˇc, and A. Kos, “Suitability of strain gage sensors for integration into smart sport equipment: A golf club example,” Sensors, vol. 17, no. 4, p. 916, Apr. 2017. [17] Y. Nemoto, R. Sakurai, S. Ogawa, K. Maruo, and Y. Fujiwara, “Effects of an unsupervised Nordic walking intervention on cognitive and physical function among older women engaging in volunteer activity,” J. Exerc. Sci. Fitness, vol. 19, no. 4, pp. 209–215, Oct. 2021. [18] P. Kocur et al., “Does Nordic walking improves the postural control and gait parameters of women between the age 65 and 74: A randomized trial,” J. Phys. Therapy Sci., vol. 27, no. 12, pp. 3733–3737, 2015. [19] J. Polecho´nski, W. Mynarski, and A. Nawrocka, “Applicability of pedometry and accelerometry in the calculation of energy expenditure during walking and Nordic walking among women in relation to their exercise heart rate,” J. Phys. Therapy Sci., vol. 27, no. 11, pp. 3525–3527, 2015. [20] H. Figard-Fabre, N. Fabre, A. Leonardi, and F. Schena, “Physiological and perceptual responses to Nordic walking in obese middle-aged women in comparison with the normal walk,” Eur. J. Appl. Physiol., vol. 108, no. 6, pp. 1141–1151, Apr. 2010. [21] M.-K. Breyer et al., “Nordic walking improves daily physical activities in COPD: A randomised controlled trial,” Respiratory Res., vol. 11, no. 1, p. 112, Dec. 2010. [22] D. Homma, H. Jigami, and N. Sato, “Effects of Nordic walking on pelvis motion and muscle activities around the hip joints of adults with hip osteoarthritis,” J. Phys. Therapy Sci., vol. 28, no. 4, pp. 1213–1218, 2016. [23] M. Kunysz-Rozborska and A. Rejman, “Nordic walking as a form of recreation,” Central Eur. J. Sport Sci. Med., vol. 26, no. 2, pp. 77–82, 2019. [24] F. Mocera, G. Aquilino, and A. Somà, “Nordic walking performance analysis with an integrated monitoring system,” Sensors, vol. 18, no. 5, p. 1505, May 2018. [25] P. Pierleoni, A. Belli, L. Palma, M. Paoletti, S. Raggiunto, and F. Pinti, “Postural stability evaluation using wearable wireless sensor,” in Proc. IEEE 23rd Int. Symp. Consum. Technol. (ISCT), Jun. 2019, pp. 256–260. [26] P. Pierleoni et al., “Biological age estimation using an eHealth system based on wearable sensors,” J. Ambient Intell. Humanized Comput., vol. 12, no. 4, pp. 4449–4460, Apr. 2021. [27] L. Cecchetto, Nordic walking e salute. Esperienze e strumenti di educazione alla salute e riabilitazione-animazione. RSA-RSD, Centri diurni, territorio, vol. 135. Santarcangelo di Romagna, Italy: Maggioli Editore, 2014, pp. 69–76. [28] A. Pezzatini, “Scopriamo la forza del bastoncino sul terreno,” Camminare, Fusta Editore, Saluzzo, Italy, Tech. Rep. 39, 2013, pp. 29–30. [29] Y.-C. Wu, Q. Chaudhari, and E. Serpedin, “Clock synchronization of wireless sensor networks,” IEEE Signal Process. Mag., vol. 28, no. 1, pp. 124–138, Jan. 2011. [30] S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, “Estimation of IMU and marg orientation using a gradient descent algorithm,” in Proc. IEEE Int. Conf. Rehabil. Robot. (ICORR), Jun. 2011, pp. 1–7. [31] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spoken word recognition,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-26, no. 1, pp. 43–49, Feb. 1978. [32] R. Muscillo, M. Schmid, and S. Conforto, “The median point DTW template to classify upper limb gestures at different speeds,” in Proc. 4th Eur. Conf. Int. Fed. Med. Biol. Eng. Berlin, Germany: Springer, 2009, pp. 63–66. [33] R. Muscillo, M. Schmid, S. Conforto, and T. D’Alessio, “Early recognition of upper limb motor tasks through accelerometers: Real-time implementation of a DTW-based algorithm,” Comput. Biol. Med., vol. 41, no. 3, pp. 164–172, Mar. 2011. [34] S. Wudarczyk, B. Lewandowski, J. Szrek, and J. Bałchanowski, “A simulation stand for human limb movements during Nordic walking,” in Proc. Int. Conf. Theory Mach. Mech. Cham, Switzerland: Springer, 2020, pp. 173–182. [35] C. Russo, F. Mocera, and A. Somà, “Nordic walking multibody analysis and experimental identification,” Proc. Inst. Mech. Eng., P, J. Sports Eng. Technol., pp. 1–12, Jun. 2020.en_US
dc.description.obiettivoSpecifico7TM.Sviluppo e Trasferimento Tecnologicoen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn1530-437Xen_US
dc.contributor.authorPierleoni, Paola-
dc.contributor.authorRaggiunto, Sara-
dc.contributor.authorMarzorati, Simone-
dc.contributor.authorPalma, Lorenzo-
dc.contributor.authorCucchiarelli, Alessandro-
dc.contributor.authorBelli, Alberto-
dc.contributor.departmentDepartment of Information Engineering, Polytechnic University of Marcheen_US
dc.contributor.departmentDepartment of Information Engineering, Polytechnic University of Marcheen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentDepartment of Information Engineering, Polytechnic University of Marcheen_US
dc.contributor.departmentDepartment of Information Engineering, Polytechnic University of Marcheen_US
dc.contributor.departmentDepartment of Information Engineering, Polytechnic University of Marcheen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptDepartment of Information Engineering, Polytechnic University of Marche-
crisitem.author.orcid0000-0002-1436-8864-
crisitem.author.orcid0000-0001-8302-4507-
crisitem.author.orcid0000-0002-5803-4882-
crisitem.author.orcid0000-0003-2851-3310-
crisitem.author.orcid0000-0003-0173-9862-
crisitem.author.orcid0000-0002-6142-0987-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
LARGE_bf_Activity_Monitoring_through_Wireless_.pdfsubmitted manuscript5.8 MBAdobe PDFView/Open
Show simple item record

Page view(s)

106
checked on Mar 27, 2024

Download(s)

43
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric