Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/16259
DC FieldValueLanguage
dc.date.accessioned2023-02-28T07:28:33Z-
dc.date.available2023-02-28T07:28:33Z-
dc.date.issued2022-12-06-
dc.identifier.urihttp://hdl.handle.net/2122/16259-
dc.description.abstractThe deformation style of the continental lithosphere is a relevant issue for geodynamics and seismic hazard perspectives. Here we show the first evidence of two well-distinct low-angle and SW-dipping individual reverse shear zones of the Italian Outer Thrust System in Central Italy. One corresponds to the down-dip prosecution of the Adriatic Basal Thrust with its major splay and the other to a hidden independent structure, illuminated at a depth between 25 and 60 km, for an along-strike extent of ~ 150 km. Combining geological information with high-quality seismological data, we unveil this novel configuration and reconstruct a detailed 3D geometric and kinematic fault model of the compressional system, active at upper crust to upper mantle depths. In addition, we report evidence of coexisting deformation volumes undergoing well-distinguished stress fields at different lithospheric depths. These results provide fundamental constraints for a forthcoming discussion on the Apennine fold-and-thrust system's geodynamic context as a shallow subduction zone or an intra-continental lithosphere shear zone.en_US
dc.language.isoEnglishen_US
dc.publisher.nameNature PGen_US
dc.relation.ispartofScientific Reportsen_US
dc.relation.ispartofseries/12 (2022)en_US
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.titleLithospheric double shear zone unveiled by microseismicity in a region of slow deformationen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber21066en_US
dc.identifier.URLhttps://www.nature.com/articles/s41598-022-24903-1en_US
dc.subject.INGV04.06. Seismologyen_US
dc.identifier.doi10.1038/s41598-022-24903-1en_US
dc.relation.referencesBoerner, D. E., Craven, J. A., Kurtz, R. D., Ross, G. M. & Jones, F. W. The Great Falls Tectonic Zone: Suture or intracontinental shear zone. Can. J. Earth Sci. 35, 175–183 (1998). Vauchez, A., Tommasi, A. & Mainprice, D. Faults (shear zones) in the Earth’s mantle. Tectonophysics 558–559, 1–27. https://doi.org/10.1016/j.tecto.2012.06.006 (2012). Fillerup, M. A., Knapp, J. H., Knapp, C. C. & Raileanu, V. Mantle earthquakes in the absence of subduction? Continental delamination in the Romanian Carpathians. Lithosphere 2, 333–340. https://doi.org/10.1130/l102.1 (2010). Engdahl, E. R. et al. ISC-EHB 1964–2016, an improved data set for studies of earth structure and global seismicity. Earth Space Sci. https://doi.org/10.1029/2019ea000897 (2020). Heidbach, O. et al. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics 744, 484–498. https://doi.org/10.1016/j.tecto.2018.07.007 (2018). Chiarabba, C., De Gori, P. & Speranza, F. Deep geometry and rheology of an orogenic wedge developing above a continental subduction zone: Seismological evidence from the northern-central Apennines (Italy). Lithosphere 1, 95–104. https://doi.org/10.1130/l34.1 (2009). Piana Agostinetti, N., Buttinelli, M. & Chiarabba, C. Deep structure of the crust in the area of the 2016–2017 Central Italy seismic sequence from receiver function analysis. Tectonophysics https://doi.org/10.1016/j.tecto.2022.229237 (2022). Faccenna, C. et al. Mantle dynamics in the Mediterranean. Rev. Geophys. 52, 283–332. https://doi.org/10.1002/2013rg000444 (2014). McKenzie, D., Jackson, J. & Priestley, K. Continental collisions and the origin of subcrustal continental earthquakes. Can. J. Earth Sci. 56, 1101–1118. https://doi.org/10.1139/cjes-2018-0289 (2019). Jolivet, L. et al. Geodynamic evolution of a wide plate boundary in the Western Mediterranean, near-field versus far-field interactions. BSGF Earth Sci. Bull. https://doi.org/10.1051/bsgf/2021043 (2021). Lavecchia, G., De Nardis, R., Visini, F., Ferrarini, F. & Barbano, M. S. Seismogenic evidence of ongoing compression in eastern-central Italy and mainland Sicily: A comparison. Boll. Soc. Geol. Ital. 126, 209–222 (2007). Barreca, G. et al. Slab detachment, mantle flow, and crustal collision in Eastern Sicily (Southern Italy): Implications on mount etna volcanism. Tectonics https://doi.org/10.1029/2020tc006188 (2020). Turrini, C., Angeloni, P., Lacombe, O., Ponton, M. & Roure, F. Three-dimensional seismo-tectonics in the Po Valley basin, Northern Italy. Tectonophysics 661, 156–179. https://doi.org/10.1016/j.tecto.2015.08.033 (2015). Lavecchia, G. et al. Was the Mirandola thrust really involved in the Emilia 2012 seismic sequence (northern Italy)? Implications on the likelihood of triggered seismicity effects. Bollettino di Geofisica Teorica ed Applicata 56, 461–488 (2015). Lavecchia, G. et al. Regional seismotectonic zonation of hydrocarbon fields in active thrust belts: a case study from Italy. In Building Knowledge for Geohazard Assessment and Management in the Caucasus and other Orogenic Regions (eds Bonali F. L., Mariotto F. P., & Tsereteli N.) 89–128 (Springer Netherlands, 2021) https://doi.org/10.1007/978-94-024-2046-3_7. Livani, M., Scrocca, D., Arecco, P. & Doglioni, C. Structural and stratigraphic control on salient and recess development along a thrust belt front: The Northern Apennines (Po Plain, Italy). J. Geophys. Res. Solid Earth 123, 4360–4387. https://doi.org/10.1002/2017jb015235 (2018). Scrocca, D. Thrust front segmentation induced by differential slab retreat in the Apennines (Italy). Terra Nova 18, 154–161. https://doi.org/10.1111/j.1365-3121.2006.00675.x (2006). Lavecchia, G., Boncio, P. & Creati, N. A lithospheric-scale seismogenic thrust in central Italy. J. Geodyn. 36, 79–94. https://doi.org/10.1016/s0264-3707(03)00040-1 (2003). Pauselli, C., Barchi, M. R., Federico, C., Magnani, M. B. & Minelli, G. The crustal structure of the northern apennines (Central Italy): An insight by the crop03 seismic line. Am. J. Sci. 306, 428–450. https://doi.org/10.2475/06.2006.02 (2006). Barchi, M. R. The Neogene-Quaternary evolution of the Northern Apennines: Crustal structure, style of deformation and seismicity. J. Virtual Explorer https://doi.org/10.3809/jvirtex.2010.00220 (2010). Chiaraluce, L., Collettini, C., Cattaneo, M. & Monachesi, G. The shallow boreholes at The AltotiBerina near fault Observatory (TABOO; northern Apennines of Italy). Sci. Drill. 17, 31–35. https://doi.org/10.5194/sd-17-31-2014 (2014). Mirabella, F., Brozzetti, F., Lupattelli, A. & Barchi, M. R. Tectonic evolution of a low-angle extensional fault system from restored cross-sections in the Northern Apennines (Italy). Tectonics https://doi.org/10.1029/2011TC002890 (2011). Lavecchia, G., Brozzetti, F., Barchi, M., Menichetti, M. & Keller, J. V. A. Seismotectonic zoning in east-central Italy deduced from an analysis of the Neogene to present deformations and related stress fields. Geol. Soc. Am. Bull. 106, 1107–1120. https://doi.org/10.1130/00167606(1994)106%3c1107:SZIECI%3e2.3.CO;2 (1994). Lavecchia, G. et al. Multidisciplinary inferences on a newly recognized active east-dipping extensional system in Central Italy. Terra Nova 29, 77–89. https://doi.org/10.1111/ter.12251 (2017). Devoti, R. et al. A combined velocity field of the mediterranean region. Ann. Geophys. https://doi.org/10.4401/ag-7059 (2017). Rovida, A., Locati, M., Camassi, R., Lolli, B. & Gasperini, P. The Italian earthquake catalogue CPTI15. Bull. Earthq. Eng. 18, 2953–2984. https://doi.org/10.1007/s10518-020-00818-y (2020). Bello, S. et al. Complex trans-ridge normal faults controlling large earthquakes. Sci. Rep. 12, 10676. https://doi.org/10.1038/s41598-022-14406-4 (2022). ISIDe Working Group. Italian Seismological Instrumental and Parametric Database. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/ISIDE (2007). Visini, F., de Nardis, R. & Lavecchia, G. Rates of active compressional deformation in central Italy and Sicily: Evaluation of the seismic budget. Int. J. Earth Sci. 99, 243–264. https://doi.org/10.1007/s00531-009-0473-x (2009). Rovida, A. et al. Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/CPTI/CPTI15.4 (2022). DISS Working Group. Database of Individual Seismogenic Sources (DISS), Version 3.3.0: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/diss3.3.0 (2021). Lomax, A., Virieux, J., Volant, P. & Berge-Thierry, C. Probabilistic earthquake location in 3D and layered models. In Advances in Seismic Event Location (eds Thurber, C. H. & Rabinowitz, N.) Ch. 5, 101–134 (Kluwer Academic Publishers, 2000). Carannante, S., Monachesi, G., Cattaneo, M., Amato, A. & Chiarabba, C. Deep structure and tectonics of the northern-central Apennines as seen by regional-scale tomography and 3-D located earthquakes. J. Geophys. Res. Solid Earth 118, 5391–5403. https://doi.org/10.1002/jgrb.50371 (2013). Monachesi, G. et al. Beach Balls dell'Italia Centro Orientale, una raccolta di meccanismi focali dei terremoti registrati dal 2009 dalle stazioni della Rete Sismometrica Integrata dell'Italia Centro Orientale (ReSiICO) (ed Istituto Nazionale di Geofisica e Vulcanologia) (2012). Cattaneo, M., Frapiccini, M., Ladina, C., Marzorati, S. & Monachesi, G. A mixed automatic-manual seismic catalog for Central-Eastern Italy: Analysis of homogeneity. Ann. Geophys. https://doi.org/10.4401/ag-7333 (2017). Cattaneo, M. et al. ReSIICOphs. Database of the Central Eastern Italy Seismometric Network: phases. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/resiico/phs (2019). Spallarossa, D. et al. An automatically generated high-resolution earthquake catalogue for the 2016–2017 Central Italy seismic sequence, including P and S phase arrival times. Geophys. J. Int. 225, 555–571. https://doi.org/10.1093/gji/ggaa604 (2021). Improta, L. et al. Multi-segment rupture of the 2016 Amatrice-Visso-Norcia seismic sequence (central Italy) constrained by the first high-quality catalog of Early Aftershocks. Sci. Rep. 9, 6921. https://doi.org/10.1038/s41598-019-43393-2 (2019). Chiaraluce, L. et al. The 2016 central Italy seismic sequence: A first look at the mainshocks, aftershocks, and source models. Seismol. Res. Lett. 88, 757–771 (2017). Reasenberg, P. A. & Oppenheimer, D. FPFIT, FPPLOT and FPPAGE: FORTRAN Computer Programs for Calculating and Displaying Earthquake Fault-Plane Solutions. 109 (U.S. Geological Survey, 1985). Zoback, M. L. First- and second-order patterns of stress in the lithosphere: The world stress map project. J. Geophys. Res. 97, 11 (1992) (703–711,728). Scognamiglio, L., Tinti, E. & Quintiliani, M. Time Domain Moment Tensor [Data Set] (ed Istituto Nazionale di Geofisica e Vulcanologia (INGV)), (2006). Pondrelli, S. et al. The Italian CMT dataset from 1977 to the present. Phys. Earth Planet. Inter. 159, 286–303. https://doi.org/10.1016/j.pepi.2006.07.008 (2006). Brozzetti, F. & Lavecchia, G. Seismicity and related extensional stress field: the case of the Norcia seismic zone (central Italy). Annales Tectonicae 8, 36–57 (1994). Lavecchia, G. et al. QUaternary fault strain INdicators database—QUIN 1.0—first release from the Apennines of central Italy. Sci. Data 9, 204. https://doi.org/10.1038/s41597-022-01311-8 (2022). Barchi, M., Minelli, G. & Pialli, G. The CROP 03 Profile: A synthesis of results on deep structures of the Northern Apennines. Mem. Soc. Geol. It. 52, 383–400 (1998). Finetti, I. R. et al. Crustal section based on CROP seismic data across the North Tyrrhenian-Northern Apennines–Adriatic Sea. Tectonophysics 343, 135–163. https://doi.org/10.1016/s0040-1951(01)00141-x (2001). Carafa, M. M. C. & Barba, S. The stress field in Europe: Optimal orientations with confidence limits. Geophys. J. Int. 193, 531–548. https://doi.org/10.1093/gji/ggt024 (2013). Delvaux, D. & Sperner, B. New aspects of tectonic stress inversion with reference to the TENSOR program. Geol. Soc. Lond. Spec. Publ. 212, 75–100. https://doi.org/10.1144/gsl.Sp.2003.212.01.06 (2003). Maggi, A., Jackson, J., McKenzie, D. & Priestley, K. Earthquake focal depths, effective elastic thickness and the strength of the continental lithosphere. Geology 28, 495–498. https://doi.org/10.1130/0091-7613(2000)28%3c495:EFDEET%3e2.0.CO;2 (2000). Singer, J., Diehl, T., Husen, S., Kissling, E. & Duretz, T. Alpine lithosphere slab rollback causing lower crustal seismicity in northern foreland. Earth Planet. Sci. Lett. 397, 42–56. https://doi.org/10.1016/j.epsl.2014.04.002 (2014). Sgroi, T., de Nardis, R. & Lavecchia, G. Crustal structure and seismotectonics of central Sicily (southern Italy): New constraints from instrumental seismicity. Geophys. J. Int. 189, 1237–1252. https://doi.org/10.1111/j.1365-246X.2012.05392.x (2012). Lavecchia, G., Ferrarini, F., de Nardis, R., Visini, F. & Barbano, M. S. Active thrusting as a possible seismogenic source in Sicily (Southern Italy): Some insights from integrated structural–kinematic and seismological data. Tectonophysics 445, 145–167. https://doi.org/10.1016/j.tecto.2007.07.007 (2007). Papadopoulos, G. A. et al. The 26 November 2019 Mw 6.4 Albania Destructive Earthquake. Seismol. Res. Lett. 91, 3129–3138. https://doi.org/10.1785/0220200207 (2020). Jamtveit, B., Austrheim, H. & Putnis, A. Disequilibrium metamorphism of stressed lithosphere. Earth Sci. Rev. 154, 1–13. https://doi.org/10.1016/j.earscirev.2015.12.002 (2016). Dal Zilio, L., van Dinther, Y., Gerya, T. & Avouac, J. P. Bimodal seismicity in the Himalaya controlled by fault friction and geometry. Nat. Commun. 10, 48. https://doi.org/10.1038/s41467-018-07874-8 (2019). Petricca, P., Carminati, E. & Doglioni, C. Estimation of the maximum earthquakes magnitude based on potential brittle volume and strain rate: The Italy test case. Tectonophysics https://doi.org/10.1016/j.tecto.2022.229405 (2022). De Luca, G., Cattaneo, M., Monachesi, G. & Amato, A. Seismicity in Central and Northern Apennines integrating the Italian national and regional networks. Tectonophysics 476, 121–135. https://doi.org/10.1016/j.tecto.2008.11.032 (2009). Petricca, P., Carminati, E. & Doglioni, C. The decollement depth of active thrust faults in Italy: Implications on potential earthquake magnitude. Tectonics 38, 3990–4009. https://doi.org/10.1029/2019tc005641 (2019). Splendore, R. & Marotta, A. M. Crust-mantle mechanical structure in the Central Mediterranean region. Tectonophysics 603, 89–103. https://doi.org/10.1016/j.tecto.2013.05.017 (2013). Hasegawa, A., Umino, N. & Takagi, A. Double-planed deep seismic zone and upper-mantle structure in the Northeastern Japan Arc. Geophys. J. R. Astron. Soc. 54, 281–296 (1978). Dorbath, C., Gerbault, M., Carlier, G. & Guiraud, M. Double seismic zone of the Nazca plate in northern Chile: High-resolution velocity structure, petrological implications, and thermomechanical modeling. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2008gc002020 (2008). Wei, S. S. et al. Along-strike variations in intermediate-depth seismicity and arc magmatism along the Alaska Peninsula. Earth Planet. Sci. Lett. https://doi.org/10.1016/j.epsl.2021.116878 (2021). Florez, M. A. & Prieto, G. A. Controlling factors of seismicity and geometry in double seismic zones. Geophys. Res. Lett. 46, 4174–4181. https://doi.org/10.1029/2018gl081168 (2019). Sippl, C., Schurr, B., Asch, G. & Kummerow, J. Seismicity structure of the Northern Chile Forearc from >100,000 double-difference relocated hypocenters. J. Geophys. Res. Solid Earth 123, 4063–4087. https://doi.org/10.1002/2017jb015384 (2018). Basili, R. & Barba, S. Migration and shortening rates in the northern Apennines, Italy: Implications for seismic hazard. Terra Nova 19, 462–468. https://doi.org/10.1111/j.1365-3121.2007.00772.x (2007). Vannoli, P., Basili, R. & Valensise, G. New geomorphic evidence for anticlinal growth driven by blind-thrust faulting along the northern Marche coastal belt (central Italy). J. Seismol. 8, 297–312. https://doi.org/10.1023/B:JOSE.0000038456.00574.e3 (2004). Ponza, A., Pazzaglia, F. J. & Picotti, V. Thrust-fold activity at the mountain front of the Northern Apennines (Italy) from quantitative landscape analysis. Geomorphology 123, 211–231. https://doi.org/10.1016/j.geomorph.2010.06.008 (2010). Ferrarini, F. et al. Late quaternary tectonics along the peri-adriatic sector of the Apenninic Chain (Central-Southern Italy): Inspecting active shortening through topographic relief and fluvial network analyses. Lithosphere 2021, 1–28. https://doi.org/10.2113/2021/7866617 (2021). Carafa, M. M. C. & Bird, P. Improving deformation models by discounting transient signals in geodetic data: 1. Concept and synthetic examples. J. Geophys. Res. Solid Earth 121, 5538–5556. https://doi.org/10.1002/2016jb013056 (2016). Pezzo, G. et al. Active fold-thrust belt to foreland transition in Northern Adria, Italy, tracked by seismic reflection profiles and GPS offshore data. Tectonics https://doi.org/10.1029/2020tc006425 (2020). Battimelli, E., Adinolfi, G. M., Amoroso, O. & Capuano, P. Seismic activity in the central adriatic offshore of Italy: A review of the 1987 ML 5 Porto San Giorgio Earthquake. Seismol. Res. Lett. https://doi.org/10.1785/0220190048 (2019). Boncio, P. & Bracone, V. Active stress from earthquake focal mechanisms along the Padan-Adriatic side of the Northern Apennines (Italy), with considerations on stress magnitudes and pore-fluid pressures. Tectonophysics 476, 180–194. https://doi.org/10.1016/j.tecto.2008.09.018 (2009). Mazzoli, S., Macchiavelli, C. & Ascione, A. The 2013 Marche offshore earthquakes: New insights into the active tectonic setting of the outer northern Apennines. J. Geol. Soc. 171, 457–460. https://doi.org/10.1144/jgs2013-091 (2014). Costa, M., Chicco, J., Invernizzi, C., Teloni, S. & Pierantoni, P. P. Plio-quaternary structural evolution of the outer sector of the Marche Apennines South of the Conero Promontory, Italy. Geosciences. https://doi.org/10.3390/geosciences11050184 (2021). Boncio, P., Mancini, T., Lavecchia, G. & Selvaggi, G. Seismotectonics of strike-slip earthquakes within the deep crust of southern Italy: Geometry, kinematics, stress field and crustal rheology of the Potenza 1990–1991 seismic sequences (Mmax 5.7). Tectonophysics 445, 281–300. https://doi.org/10.1016/j.tecto.2007.08.016 (2007). Di Bucci, D., Burrato, P., Vannoli, P. & Valensise, G. Tectonic evidence for the ongoing Africa-Eurasia convergence in central Mediterranean foreland areas: A journey among long-lived shear zones, large earthquakes, and elusive fault motions. J. Geophys. Res. https://doi.org/10.1029/2009jb006480 (2010). Adinolfi, G. M. et al. The September 27, 2012, ML 4.1, Benevento earthquake: A case of strike-slip faulting in Southern Apennines (Italy). Tectonophysics 660, 35–46. https://doi.org/10.1016/j.tecto.2015.06.036 (2015). Cuffaro, M. et al. On the geodynamics of the northern Adriatic plate. Rendiconti Lincei 21, 253–279. https://doi.org/10.1007/s12210-010-0098-9 (2010). Petricca, P., Carafa, M. M. C., Barba, S. & Carminati, E. Local, regional, and plate scale sources for the stress field in the Adriatic and Periadriatic region. Mar. Pet. Geol. 42, 160–181. https://doi.org/10.1016/j.marpetgeo.2012.08.005 (2013). Ferrarini, F., Lavecchia, G., de Nardis, R. & Brozzetti, F. Fault geometry and active stress from earthquakes and field geology data analysis: The Colfiorito 1997 and L’Aquila 2009 Cases (Central Italy). Pure Appl. Geophys. 172, 1079–1103. https://doi.org/10.1007/s00024-014-0931-7 (2015). Doglioni, C. A proposal of kinematic modelling for W-dipping subductions—Possible applications to the Tyrrhenian-Apennines system. Terra Nova 3, 423–434 (1991). Lavecchia, G. & Stoppa, F. The Tyrrhenian zone: A case of lithosphere extension control of intra-continental magmatism. Earth Planet. Sci. Lett. 99, 336–350 (1990). Lavecchia, G., Boncio, P., Creati, N. & Brozzetti, F. Some aspects of the Italian geology not fitting with a subduction scenario. J. Virtual Explor. 10, 1–14 (2003). Allmendinger, R. W., Cardozo, N. & Fisher, D. M. Structural Geology Algorithms: Vectors and Tensors. (Cambridge University Press, 2012). Cirillo, D. et al. Structural complexities and tectonic barriers controlling recent seismic activity in the Pollino area (Calabria–Lucania, southern Italy)—Constraints from stress inversion and 3D fault model building. Solid Earth 13, 205–228. https://doi.org/10.5194/se-13-205-2022 (2022). Bello, S. et al. Fault pattern and seismotectonic style of the Campania–Lucania 1980 earthquake (Mw 6.9, Southern Italy): New multidisciplinary constraints. Front. Earth Sci. https://doi.org/10.3389/feart.2020.608063 (2021). Castaldo, R. et al. Coseismic stress and strain field changes investigation through 3-D finite element modeling of DInSAR and GPS measurements and geological/seismological data: The L’Aquila (Italy) 2009 earthquake case study. J. Geophys. Res. Solid Earth 123, 4193–4222. https://doi.org/10.1002/2017JB014453 (2018).en_US
dc.description.obiettivoSpecifico2T. Deformazione crostale attivaen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn2045-2322en_US
dc.contributor.authorde Nardis, Rita-
dc.contributor.authorPandolfi, Claudia-
dc.contributor.authorCattaneo, Marco-
dc.contributor.authorMonachesi, Giancarlo-
dc.contributor.authorCirillo, Daniele-
dc.contributor.authorFerrarini, Federica-
dc.contributor.authorBello, Simone-
dc.contributor.authorBrozzetti, Francesco-
dc.contributor.authorLavecchia, Giusy-
dc.contributor.departmentDiSPuTer, University G. d’Annunzio, Via dei Vestini 31, 66100, Chieti, Italyen_US
dc.contributor.departmentDiSPuTer, University G. d’Annunzio, Via dei Vestini 31, 66100, Chieti, Italyen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentDiSPuTer, University G. d’Annunzio, Via dei Vestini 31, 66100, Chieti, Italyen_US
dc.contributor.departmentDiSPuTer, University G. d’Annunzio, Via dei Vestini 31, 66100, Chieti, Italyen_US
dc.contributor.departmentDiSPuTer, University G. d’Annunzio, Via dei Vestini 31, 66100, Chieti, Italyen_US
dc.contributor.departmentDiSPuTer, University G. d’Annunzio, Via dei Vestini 31, 66100, Chieti, Italyen_US
dc.contributor.departmentDiSPuTer, University G. d’Annunzio, Via dei Vestini 31, 66100, Chieti, Italyen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDiSPuTer, University G. d’Annunzio, Via dei Vestini 31, 66100, Chieti, Italy-
crisitem.author.deptDiSPuTer, University G. d’Annunzio, Via dei Vestini 31, 66100, Chieti, Italy-
crisitem.author.deptDiSPuTer, University G. d’Annunzio, Via dei Vestini 31, 66100, Chieti, Italy-
crisitem.author.deptDiSPuTer, University G. d’Annunzio, Via dei Vestini 31, 66100, Chieti, Italy-
crisitem.author.deptDiSPuTer, University G. d’Annunzio, Via dei Vestini 31, 66100, Chieti, Italy-
crisitem.author.deptDiSPuTer, University G. d’Annunzio, Via dei Vestini 31, 66100, Chieti, Italy-
crisitem.author.orcid0000-0003-0887-4629-
crisitem.author.orcid0000-0001-6017-8861-
crisitem.author.orcid0000-0002-0879-4920-
crisitem.author.orcid0000-0002-1175-1083-
crisitem.author.orcid0000-0003-3726-0116-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Lithospheric double shear zone_scientific_report.pdfOpen Access Published Paper4.06 MBAdobe PDFView/Open
Show simple item record

Page view(s)

27
checked on Apr 17, 2024

Download(s)

9
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric