Please use this identifier to cite or link to this item:
Authors: Magrini, Fabrizio* 
Lauro, Sebastian* 
Kästle, Emanuel* 
Boschi, Lapo* 
Title: Surface-wave tomography using SeisLib: a Python package for multiscale seismic imaging
Journal: Geophysical Journal International 
Series/Report no.: /231(2022)
Publisher: Oxford University Press - The Royal Astronomical Society
Issue Date: Jun-2022
DOI: 10.1093/gji/ggac236
Keywords: Inverse theory
Seismic tomography
Surface waves
free oscillations
Subject Classification04.01. Earth Interior 
04.06. Seismology 
Abstract: To improve our understanding of the Earth’s interior, seismologists often have to deal with enormous amounts of data, requiring automatic tools for their analyses. It is the purpose of this study to present SeisLib, an open-source Python package for multiscale seismic imaging. At present, SeisLib includes routines for carrying out surface-wave tomography tasks based on seismic ambient noise and teleseismic earthquakes. We illustrate here these functionalities, both from the theoretical and algorithmic point of view and by application of our library to seismic data from North America. We first show how SeisLib retrieves surface-wave phase velocities from the ambient noise recorded at pairs of receivers, based on the zero crossings of their normalized cross-spectrum. We then present our implementation of the two-station method, to measure phase velocities from pairs of receivers approximately lying on the same great-circle path as the epicentre of distant earthquakes. We apply these methods to calcu- late dispersion curves across the conterminous United States, using continuous seismograms from the transportable component of USArray and earthquake recordings from the permanent networks. Overall, we measure 144 272 ambient-noise and 2055 earthquake-based dispersion curves, that we invert for Rayleigh-wave phase-velocity maps. To map the lateral variations in surface-wave velocity, SeisLib exploits a least-squares inversion algorithm based on ray theory. Our implementation supports both equal-area and adaptive parametrizations, with the latter al- lowing for a finer resolution in the areas characterized by high density of measurements. In the broad period range 4–100 s, the retrieved velocity maps of North America are highly correlated (on average, 96 per cent) and present very small average differences (0.14 ± 0.1 per cent) with those reported in the literature. This points to the robustness of our algorithms. We also produce a global phase-velocity map at the period of 40 s, combining our dispersion measurements with those collected at global scale in previous studies. This allows us to demonstrate the reliability and optimized computational speed of SeisLib, even in presence of very large seismic inverse problems and strong variability in the data coverage. The last part of the manuscript deals with the attenuation of Rayleigh waves, which can be estimated through SeisLib based on the seismic ambient noise recorded at dense arrays of receivers. We apply our algorithm to produce an at- tenuation map of the United States at the period of 4 s, which we find consistent with the relevant literature.
Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
magrini_seislib_python.pdfArticle11.26 MBAdobe PDFView/Open
Show full item record

Page view(s)

checked on Mar 31, 2023


checked on Mar 31, 2023

Google ScholarTM