Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/16193
DC FieldValueLanguage
dc.date.accessioned2023-02-21T08:43:15Z-
dc.date.available2023-02-21T08:43:15Z-
dc.date.issued2023-01-17-
dc.identifier.urihttp://hdl.handle.net/2122/16193-
dc.description.abstractIn this paper we deal with statistical features of earthquakes, seeking possible correlations between the G-R magnitude distribution and the short-term clustering in an area of the Central Apennines, Italy, where significant seismicity with earthquakes exceeding magnitude 6.0 has been repeatedly observed from 1990 to the present. For this purpose, a recently developed version of the ETAS model, incorporating a threedimensional spatial triggering kernel, has been adopted. Our analysis has been carried out representing the b-value and the probability of independence of events on six vertical cross-sections suitably related to the seismic structures that are considered responsible of the seismicity observed in the study area. The results of the statistical analysis of the seismicity in the study area have shown a clear distinction between the western normal low-angle fault system, characterized by eastward dip, and the eastern normal fault systems, with westward dip. In the former (Etrurian Fault System; EFS) we found seismicity with a high b-value and high probability of independence, i.e., a scarce capacity of producing clusters and strong aftershock sequences. The eastern fault systems of our study area are distinguishable in two main distinct systems, which generated two strong seismic sequences in 1997 and 2016-2017. In the former (Colfiorito) sequence the seismicity showed a very low b-value and a modest probability of independence, while in the latter (Central Italy) sequence the bvalue was significantly higher and the probability of independence had extremely low values (manifesting a high level of clustering). The much higher b-value of the EFS than the other extensional sources could be caused by its peculiar seismotectonic role of discontinuity at the base of the normal active faulting, and its reduced capacity of accumulating stress. This circumstance may be interpreted by a difference in the rheological properties of these fault systems, possibly also in relation to their present status in the earthquake cycle and the presence of strong aftershock sequences.en_US
dc.language.isoEnglishen_US
dc.publisher.nameOxford University Press - The Royal Astronomical Societyen_US
dc.relation.ispartofGeophysical Journal Internationalen_US
dc.relation.ispartofseries3/233 (2023)en_US
dc.subjectSeismicity and tectonicsen_US
dc.subjectProbability distributionsen_US
dc.subjectStatistical seismologyen_US
dc.subjectFault zone rheologyen_US
dc.titleMagnitude Distribution and Clustering Properties of the 3D Seismicity in Central Apennines (Italy)en_US
dc.typearticleen_US
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber2004–2020en_US
dc.identifier.URLhttps://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggad017/6989844en_US
dc.subject.INGV04.06. Seismologyen_US
dc.subject.INGV04.07. Tectonophysicsen_US
dc.identifier.doi10.1093/gji/ggad017en_US
dc.relation.referencesAki, K., 1965. Maximum Likelihood Estimate of b in the Formula log10N=a-bm and Its Confidence Limits, Bulletin of the Earthquake Research Institute, 43, 237-239. Al-Heety, E.A. & Mohammad, O.J., 2021. The Reliance of the Earthquake B-Value on Depth and Focal Mechanism, Iraqi Geological Journal, 54, 1D, 1-10. doi:10.46717/igj.54.1D.1Ms-2021-04-21. Anderlini, L., Serpelloni, E. & Belardinelli, M., 2016. Creep and locking of a low-angle normal fault: Insights from the Altotiberina fault in the Northern Apennines (Italy), Geophys. Res. Lett., 43, 221-4329, doi:10.1002/2016GL068604. Axen, G.J., 1999. Low-angle normal fault earthquakes and triggering, Geophys. Res. Lett., 26, 3693-3696. Bally, A.W., Burbi, L., Cooper, C. & Ghelardoni, R., 1988. Balanced sections and seismic reflection profiles across the central Apennines, Mem. Soc. Geol. It., 35, 257-310. Bhattacharya, P., Chakrabarti, B., Kamal, K. & Samantha, D., 2009. Fractal Models of Earthquake Dynamics, in Reviews of Nonlinear Dynamics and Complexity, Book Editor: H.G. Schuster, Wiley Online Library, doi:10.1002/9783527628001.ch4. Boncio, P., Brozzetti, F. & Lavecchia, G., 2000. Architecture and seismotectonics of a regional low-angle normal fault zone in Central Italy, Tectonics, 19, 1038-1055. Bonini, L., Basili, R., Burrato, P., Cannelli, V., Fracassi, U., Maesano, F.E., Melini, D., Tarabusi, G., Tiberti, M.M., Vannoli P. & Valensise, G., 2019. Testing Different Tectonic Models for the Source of the Mw6.5, 30 October 2016, Norcia Earthquake (Central Italy): A Youthful Normal Fault, or Negative Inversion of an Old Thrust? Tectonics, 38, 3, 990- 1017, doi:10.1029/2018tc005185. Downloaded from https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggad017/6989844 by INGV user on 20 February 2023 ORIGINAL UNEDITED MANUSCRIPT Bressan, G., Barnaba, C., Peresan, A. & Rossi, G., 2021. Anatomy of seismicity clustering from parametric space-time analysis, Phys. Earth Planet. Inter., 320, doi:10.1016/j.pepi.2021.106787. Bürgmann, R., 2018. The geophysics, geology and mechanics of slow fault slip, Earth Planet. Sc. Lett., 495, 112-134, doi:10.1016/j.epsl.2018.04.062. Chiaraluce, L., Chiarabba, C., Collettini, C. Piccinini, D. & Cocco, M., 2007. Architecture and mechanics of an active low-angle normal fault: Alto Tiberina Fault, northern Apennines, Italy, J. Geophis. Res., 112, B10310, doi:10.1029/2007JB005015. Chiba, K., 2021. Stress state inferred from b-value and focal mechanism distributions in the aftershock area of the 2005 West Off Fukuoka Prefecture earthquake, Pure Appl. Geophys., doi:10.21203/rs.3.rs-201023/v1. Collettini, C., Barchi , M. R., De Paola, N., Trippetta, F. & Tinti, E., 2022. Rock and fault rheology explain differences between on fault and distributed seismicity, Nature Communications, doi:10.1038/s41467-022-33373-y. Console, R. & Murru, M., 2001. A simple and testable model for earthquake clustering, J. Geophys. Res., 106, 8699-8711, doi:10.1029/2000JB900269. Console, R., Jackson, D.D. & Kagan, Y.Y., 2010a. Using the ETAS model for catalog declustering and seismic background assessment, Pure Appl. Geophys., 167, 6, 819- 830. doi:10.1007/s00024-010-0065-5. Console, R., Murru, M. & Falcone, G., 2010b. Retrospective forecasting of M ≥ 4.0 earthquake in New Zealand, in Seismogenesis and Earthquake Forecasting: The Frank Evison Volume. Pure Appl. Geophys. doi:10.1007/s00024-010-0068-2. Console, R., Vannoli, P. & Carluccio, R., 2022. Physics-based simulation of sequences with foreshocks, aftershocks and multiple main shocks in Italy, Applied Sciences, 12, 2062, doi:10.3390/app12042062. Cosentino, D., Cipollari, P., Marsili, P. & Scrocca, D., 2010. Geology of the central Apennines: a regional review. In: (Eds.) Beltrando, M., Peccerillo, A., Mattei, M., Conticelli, S. & Doglioni, C. The Geology of Italy: tectonics and life along plate margins, Journal of the Virtual Explorer, ISSN 1441-8142, 36, 12, doi:10.3809/jvirtex.2010.00223. Di Bucci, D., Burrato, P., Vannoli, P. & Valensise, G., 2010. Tectonic evidence for the ongoing Africa-Eurasia convergence in central Mediterranean foreland areas: A journey among long-lived shear zones, large earthquakes, and elusive fault motions, J. Geophys. Res., 115, B12404, doi:10.1029/2009JB006480. Downloaded from https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggad017/6989844 by INGV user on 20 February 2023 ORIGINAL UNEDITED MANUSCRIPT DISS Working Group, 2021. Database of Individual Seismogenic Sources (DISS), Version 3.3.0: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. http://diss.rm.ingv.it/diss/, Istituto Nazionale di Geofisica e Vulcanologia, doi:10.6092/INGV.IT-DISS3.3.0. Doublanchet, P., 2022. Shear Stress and b-value Fluctuations in a Hierarchical Rateand- State Asperity Model, Pure Appl. Geophys., doi:10.1007/s00024-022-03039-3. Essing, D. & Poli, P., 2022. Spatiotemporal evolution of the Seismicity in the Alto Tiberina Fault System revealed by a High-Resolution Template Matching Catalog, J. Geophis. Res., doi:10.1029/2022JB024845. Frankel, A., 1995. Mapping seismic hazard in the central and eastern United States, Seismol. Res. Lett., 66, 8-21. Galadini, F., Falcucci, E., Galli, P., Giaccio, B., Gori, S., Messina, P., Moro, M., Saroli, M., Scardia, G., & Sposato, A., 2012. Time intervals to assess active and capable faults for engineering practices in Italy, Eng. Geol., 139-140, 50-65, doi:10.1016/j.enggeo.2012.03.012. Gualandi, A., Nichele, C., Serpelloni, E., Chiaraluce, L., Anderlini, L., Latorre, D., Belardinelli, M.E. & Avouac, J.P., 2017. Aseismic deformation associated with an earthquake swarm in the northern Apennines (Italy), Geophys. Res. Lett., 44, doi:10.1002/2017GL073687. Gulia, L. & Wiemer, S., 2010. The influence of tectonic regimes on the earthquake size distribution: A case study for Italy, Geoph. Res. Lett., 37, L10305, doi:10.1029/2010GL043066. Gulia, L., Rinaldi, A. P., Tormann, T.,Vannucci, G., Enescu, B., & Wiemer, S., 2018. The effect of a mainshock on the size distribution of the aftershocks, Geophys. Res. Lett., 45, 13,277-13,287, doi:10.1029/ 2018GL080619. Gutenberg, B. & Richter, C.F., 1944. Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 34, 185-188. Gutenberg, B. & Richter, C.F., 1956. Magnitudes and energy of earthquakes, Ann. Geofis., 9, 1-15. Harris, R. A., 2017. Large earthquakes and creeping faults, Rev. Geophys., 55, 169-198, doi:10.1002/2016RG000539. Downloaded from https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggad017/6989844 by INGV user on 20 February 2023 ORIGINAL UNEDITED MANUSCRIPT Hermann, M., Piegari, E. & Marzocchi, W., 2022. Revealing the spatiotemporal complexity of the magnitude distribution and b-value during an earthquake sequence, Nat. Commun., 13, 5087, doi:10.1038/s41467-022-32755-6. Improta, L., Latorre, D. , Margheriti, L., Nardi, A., Marchetti, A., Lombardi, A.M, Castello, B., Villani, F., Ciaccio, M.G., Mele, F.M., Moretti, M. & The Bollettino Sismico Italiano Working Group, 2019. Multi-segment rupture of the 2016 Amatrice-Visso-Norcia seismic sequence (central Italy) constrained by the first high-quality catalog of Early Aftershocks, Nature, Scientific Reports, 9, 6921, doi:10.1038/s41598-019-43393-2. Kagan, Y. & Jackson, D., 1991. Long-term earthquake clustering, Geophys. J. Int., 104, 117-133. doi:10.1111/J.1365-246X.1991.TB02498.X. Latorre, D., Mirabella, F., Chiaraluce, L., Trippetta, F. & Lomax, A., 2016. Assessment of earthquake locations in 3-D deterministic velocity models: A case study from the Altotiberina Near Fault Observatory (Italy), J. Geophys. Res., 121, 8113–8135, doi:10.1002/2016JB013170. Lavecchia, G., Adinolfi, G.M., De Nardis, R., Ferrarini, F., Cirillo, D., Brozzetti, F., De Matteis, R., Festa,G. & Zollo, A., 2017. Multidisciplinary inferences on a newly recognized active east-dipping extensional system in Central Italy, Terra Nova, 29, 77- 89, doi:10.1111/ter.12251. Legrand, D., 2002. Fractal Dimensions of Small, Intermediate, and Large Earthquakes, Bull. Seism. Soc. Am., 92, 8, 3318-3320. Liu, E., Ross, Z.E., Cochran, E.S. & Lapusta, N., 2022. A unified perspective of seismicity and fault coupling along the San Andreas Fault, Sci. Adv., 8, 8, doi:10.1126/sciadv.abk1167. Lolli, B., Randazzo, D., Vannucci, G. & Gasperini, P., 2020. The Homogenized Instrumental Seismic Catalog (HORUS) of Italy from 1960 to Present, Seismol. Res. Lett., 91, 3208-3222, doi: 10.1785/0220200148. Mariucci M.T., & Montone, P., 2022. IPSI 1.5, Database of Italian Present-day Stress Indicators, Istituto Nazionale di Geofisica e Vulcanologia (INGV), http://doi.org/10.13127/IPSI.1.5. Molchan, G. & Kronrod, D., 2009. The fractal description of seismicity, Geoph. J. Intern., 179, 1787-1799, doi:10.1111/j.1365-246X.2009.04380.x. Murru, M., Console, R. & Lisi, A., 2004. Seismicity and mean magnitude variations correlated to the strongest earthquakes of the 1997 Umbria-Marche sequence (central Italy), J. Geoph. Res., 109, B01304, doi:10.1029/2002JB002276. Downloaded from https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggad017/6989844 by INGV user on 20 February 2023 ORIGINAL UNEDITED MANUSCRIPT Nanjo, K.Z. & Yoshida, A., 2021. Changes in the b value in and around the focal areas of the M6.9 and M6.8 earthquakes off the coast of Miyagi prefecture, Japan, in 2021, Earth, Plan. Sp., 73, 176, doi:10.1186/s40623-021-01511-3. Ogata, Y., 1988. Statistical models for earthquake occurrences and residual analysis for point processes, J. Amer. Statist. Assoc., 83, 401, 9-27. Ogata, Y., 1998. Space-time point-process models for earthquake occurrences, Ann. Inst. Stat. Math., 50, 379-402. Omori, F., 1894. On after-shocks of earthquakes, J. Coll. Sci. Imp. Univ. Tokyo, 7, 111- 200. Piana Agostinetti, N., Giacomuzzi, N.G. & Chiarabba, C., 2017. Seismic swarms and diffuse fracturing within Triassic evaporites fed by deep degassing along the low-angle Alto Tiberina normal fault (central Apennines, Italy), J. Geophys. Res., 122, 308-331, doi:10.1002/2016JB013295. Petruccelli, A., Gasperini, P., Tormann, T., Schorlemmer, D., Rinaldi, A. P., Vannucci, G., & Wiemer, S., 2019. Simultaneous dependence of the earthquake‐size distribution on faulting style and depth, Geophys. Res. Lett., 46, doi:10.1029/2019GL083997. Pondrelli, S., Visini, F., Rovida, A., D’Amico, V., Pace, B. & Meletti, C., 2020. Style of faulting of expected earthquakes in Italy as an input for seismic hazard modeling, Nat. Hazards Earth Syst. Sci., 20, 3577-3592, doi:10.5194/nhess-20-3577-2020. Rundle, J.B., Stein, S., Donnellan, A., Turcotte, D.L., Klein, W. & Saylor, C., 2021. The complex dynamics of earthquake fault systems: new approaches to forecasting and nowcasting of earthquakes, Rep. Prog. Phys., 84, 076801, doi:10.1088/1361- 6633/abf893. Serpelloni, E, Cavaliere, A., Martelli, L., Pintori, F., Anderlini, L., Borghi, A., Randazzo, D., Bruni, S., Devoti, R., Perfetti, P. & Cacciaguerra, S., 2022. Surface Velocities and Strain-Rates in the Euro-Mediterranean Region From Massive GPS Data Processing, Front. Earth Sci., 10, 907897, doi:10.3389/feart.2022.907897. Schorlemmer, D., Wiemer, S. & Wyss, M., 2005. Variations in earthquake-size distribution across different stress regimes, Nature, Letters, 437, doi:10.1038/nature04094. Shi, Y. & Bolt, B.A., 1982. The standard error of the magnitude-frequency b-value, Bull. Seismol. Soc. Am., 72, 1677-1687. Tan, Y. J., Waldhauser, F., Ellsworth, W. L., Zhang, M., Zhu, W., Michele, M., Chiaraluce, L., Beroza, G. C. & Segou, M., 2021. Machine-Learning-Based High- Downloaded from https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggad017/6989844 by INGV user on 20 February 2023 ORIGINAL UNEDITED MANUSCRIPT Resolution Earthquake Catalog Reveals How Complex Fault Structures Were Activated during the 2016–2017 Central Italy Sequence. The Seismic Record, 1, 11-19, doi: 10.1785/ 0320210001. Tormann, T., Wiemer, S. & Mignan, A., 2013. Systematic survey of high-resolution b value imaging along Californian faults: Inference on asperities, J. Geoph. Res., Solid Earth, 119, 2029-2054, doi:10.1002/2013JB010867. Turcotte, D.L., 1986. Fractals and fragmentation, J. Geoph. Res., 91, B2, 1921-1926. Utsu, T., Ogata, Y. & Matsu’ura, R.S., 1995. The Centenary of the Omori Formula for a Decay Law of Aftershock Activity, J. Phys. of the Earth, 43, 1-33. doi:10.4294/jpe1952.43.1. Vadacca, L., Casarotti, E., Chiaraluce, L. & Cocco, M., 2016. On the mechanical behaviour of a low-angle normal fault: The Alto Tiberina fault (Northern Apennines, Italy) system case study, Solid Earth, 7, 1537-1549, doi:10.5194/se-7-1537-2016. Valerio, E., De Novellis, V., Manzo, M. & Tizzani, P., 2019. Fractal Study of the 1997- 2017 Italian Seismic Sequences: A Joint Analysis of Seismological Data and DInSAR Measurements, Remote Sens., 11, 2112; doi:10.3390/rs11182112. Valoroso, L., Chiaraluce, L., Di Stefano, R. & Monachesi, G., 2017. Mixed-mode slip behaviour of the Altotiberina low-angle normal fault system (Northern Apennines, Italy) through high-resolution earthquake locations and repeating events, J. Geophys. Res., 122, doi:10.1002/2017JB014607. Vannoli, P., Burrato, P., Fracassi, U. & Valensise, G., 2012. A fresh look at the seismotectonics of the Abruzzi (Central Apennines) following the 6 April 2009 L'Aquila earthquake (Mw 6.3), Ital. J. Geosci., 131, 3, 309-329, doi:10.3301/IJG.2012.03. Voss, R.F., 1988. Fractals in nature: From characterization to simulation. In: Peitgen, HO., Saupe, D. (eds) The Science of Fractal Images. Springer, New York, NY, doi:10.1007/978-1-4612-3784-6_1. Vuan, A., Brondi, P., Sugan, M., Chiaraluce, L., Di Stefano, R. & Michele, M., 2020. Intermittent Slip Along the Alto Tiberina Low-Angle Normal Fault in Central Italy, Geophys. Res. Lett., 47, doi:10.1029/2020GL089039. Wu, Y.-M., Chen, S.K., Huang, T.-C., Huang, H.-H., Chao, W.-A. & Koulakov, I., 2017. Relationship Between Earthquake b-Values and Crustal Stresses in a Young Orogenic Belt, Geophys. Res. Lett., 45, 1832-1837. doi:10.1002/2017GL076694. Downloaded from https://academic.oup.com/gji/advance-article/doi/10.1093/gji/ggad017/6989844 by INGV user on 20 February 2023 ORIGINAL UNEDITED MANUSCRIPT Yin, L., Li, X., Zheng, W., Yin, Z., Song, L., Ge, L. & Zeng, Q., 2019. Fractal dimension analysis for seismicity spatial and temporal distribution in the circum-Pacific seismic belt, J. Earth Syst. Sci., 128, 22, doi:10.1007/s12040-018-1040-2. Zhuang, J., Ogata, Y. & Vere-Jones, D., 2002. Stochastic Declustering of Space-Time Earthquake Occurrences, J. Am. Stat. Assoc., 97, 369-380, doi: 10.1198/016214502760046925.en_US
dc.description.obiettivoSpecifico2T. Deformazione crostale attivaen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn0956-540Xen_US
dc.contributor.authorConsole, Rodolfo-
dc.contributor.authorVannoli, Paola-
dc.contributor.authorFalcone, Giuseppe-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-7199-0388-
crisitem.author.orcid0000-0002-2554-4421-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Console_etal_2023_manuscript.pdfManuscript9.89 MBAdobe PDFView/Open
Show simple item record

Page view(s)

82
checked on Apr 17, 2024

Download(s)

32
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric