Please use this identifier to cite or link to this item:
Authors: Ruggiero, Livio* 
Sciarra, Alessandra* 
Mazzini, Adriano* 
Florindo, Fabio* 
Wilson, Gary* 
Tartarello, Maria Chiara* 
Mazzoli, Claudio* 
Anderson, Jacob* 
Romano, Valentina* 
Worthington, Rachel* 
Bigi, Sabina* 
Sassi, Raffaele* 
Ciotoli, Giancarlo* 
Title: Antarctic permafrost degassing in Taylor Valley by extensive soil gas investigation
Journal: Science of The Total Environment 
Series/Report no.: /866 (2023)
Publisher: Elsevier
Issue Date: 25-Mar-2023
DOI: 10.1016/j.scitotenv.2022.161345
Keywords: Antarctica;
CO(2) output;
McMurdo Dry Valleys;
Soil gas survey
Subject Classification02.01. Permafrost 
Abstract: Ongoing studies conducted in northern polar regions reveal that permafrost stability plays a key role in the modern carbon cycle as it potentially stores considerable quantities of greenhouse gases. Rapid and recent warming of the Arctic permafrost is resulting in significant greenhouse gas emissions, both from physical and microbial processes. The potential impact of greenhouse gas release from the Antarctic region has not, to date, been investigated. In Antarctica, the McMurdo Dry Valleys comprise 10 % of the ice-free soil surface areas in Antarctica and like the northern polar regions are also warming albeit at a slower rate. The work presented herein examines a comprehensive sample suite of soil gas (e.g., CO2, CH4 and He) concentrations and CO2 flux measurements conducted in Taylor Valley during austral summer 2019/2020. Analytical results reveal the presence of significant concentrations of CO2, CH4 and He (up to 3.44 vol%, 18,447 ppmv and 6.49 ppmv, respectively) at the base of the active layer. When compared with the few previously obtained measurements, we observe increased CO2 flux rates (estimated CO2 emissions in the study area of 21.6 km2 ≈ 15 tons day-1). We suggest that the gas source is connected with the deep brines migrating from inland (potentially from beneath the Antarctic Ice Sheet) towards the coast beneath the permafrost layer. These data provide a baseline for future investigations aimed at monitoring the changing rate of greenhouse gas emissions from Antarctic permafrost, and the potential origin of gases, as the southern polar region warms.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat Existing users please Login
Ruggiero, Sciarra Antarctica.pdfRestricted Paper4.5 MBAdobe PDF
Taylor_soil_gas__manuscript_STOTEN_clear.pdfsubmitted version3.84 MBAdobe PDFEmbargoed until January 2, 2025
Show full item record

Page view(s)

checked on Mar 23, 2023


checked on Mar 23, 2023

Google ScholarTM