Please use this identifier to cite or link to this item:
http://hdl.handle.net/2122/16150
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2023-02-09T14:18:28Z | - |
dc.date.available | 2023-02-09T14:18:28Z | - |
dc.date.issued | 2022-08-16 | - |
dc.identifier.uri | http://hdl.handle.net/2122/16150 | - |
dc.description.abstract | Identifying and characterizing the dynamics of explosive activity is impelling to build tools for hazard assessment at open-conduit volcanoes: machine learning techniques are now a feasible choice. During the summer of 2019, Stromboli experienced two paroxysmal eruptions that occurred in two different volcanic phases, which gave us the possibility to conceive and test an early-warning algorithm on a real use case: the paroxysm on July, 3 was clearly preceded by smaller and less perceptible changes in the volcano dynamics, while the second paroxysm, on August 28 concluded the eruptive phase. Among the changes observed in the weeks preceding the July paroxysm one of the most significant is represented by the shape variation of the ordinary minor explosions, filtered in the very long period (VLP 2–50 s) band, recorded by the Sacks-Evertson strainmeter installed near the village of Stromboli. Starting from these observations, the usage of two independent methods (an unsupervised machine learning strategy and a cross-correlation algorithm) to classify strain transients falling in the ultra long period (ULP 50–200 s) frequency band, allowed us to validate the robustness of the approach. This classification leads us to establish a link between VLP and ULP shape variation forms and volcanic activity, especially related to the unforeseen 3 July 2019 paroxysm. Previous warning times used to precede paroxysms at Stromboli are of a few minutes only. For paroxysmal events occurring outside any long-lasting eruption, the initial success of our approach, although applied only to the few available examples, could permit us to anticipate this time to several days by detecting medium-term strain anomalies: this could be crucial for risk mitigation by prohibiting access to the summit. Our innovative analysis of dynamic strain may be used to provide an early-warning system also on other open conduit active volcanoes. | en_US |
dc.language.iso | English | en_US |
dc.publisher.name | Frontiers Media S.A. | en_US |
dc.relation.ispartof | Frontiers in Earth Science | en_US |
dc.relation.ispartofseries | /10 (2022) | en_US |
dc.rights | Attribution-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/3.0/us/ | * |
dc.subject | early warning system | en_US |
dc.subject | SOM | en_US |
dc.subject | cross-correlation | en_US |
dc.subject | VLP and ULP signals | en_US |
dc.subject | Stromboli, strain data | en_US |
dc.title | Dynamic strain anomalies detection at Stromboli before 2019 vulcanian explosions using machine learning | en_US |
dc.type | article | en |
dc.description.status | Published | en_US |
dc.type.QualityControl | Peer-reviewed | en_US |
dc.description.pagenumber | 862086 | en_US |
dc.identifier.doi | 10.3389/feart.2022.862086 | en_US |
dc.description.obiettivoSpecifico | 4V. Processi pre-eruttivi | en_US |
dc.description.journalType | JCR Journal | en_US |
dc.relation.issn | 2296-6463 | en_US |
dc.contributor.author | Romano, Pierdomenico | - |
dc.contributor.author | Di Lieto, Bellina | - |
dc.contributor.author | Scarpetta, Silvia | - |
dc.contributor.author | Rossetti, Ilenia | - |
dc.contributor.author | Linde, Alan | - |
dc.contributor.author | Scarpa, Roberto | - |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia | en_US |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia | en_US |
dc.contributor.department | Dipartimento di Fisica “E.R. Caianiello”, Università di Salerno, Fisciano, Italy | en_US |
dc.contributor.department | INFN Gruppo Coll, di Salerno, Unità di Napoli, Salerno, Italy | en_US |
dc.contributor.department | Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, United States | en_US |
dc.contributor.department | Dipartimento di Fisica “E.R. Caianiello”, Università di Salerno, Fisciano, Italy | en_US |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia | - |
crisitem.author.dept | INFN Gruppo Coll, di Salerno, Unità di Napoli, Salerno, Italy | - |
crisitem.author.dept | Università di Salerno, Dipartimento di Fisica "E.R. Caianiello", Salerno, Italy | - |
crisitem.author.orcid | 0000-0002-2380-0567 | - |
crisitem.author.orcid | 0000-0001-8093-3051 | - |
crisitem.author.orcid | 0000-0003-4189-0065 | - |
crisitem.author.orcid | 0000-0001-5882-5011 | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
Appears in Collections: | Article published / in press |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
feart-10-862086.pdf | Open Access published article | 5.18 MB | Adobe PDF | View/Open |
Page view(s)
119
checked on Sep 14, 2024
Download(s)
13
checked on Sep 14, 2024