Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/16150
DC FieldValueLanguage
dc.date.accessioned2023-02-09T14:18:28Z-
dc.date.available2023-02-09T14:18:28Z-
dc.date.issued2022-08-16-
dc.identifier.urihttp://hdl.handle.net/2122/16150-
dc.description.abstractIdentifying and characterizing the dynamics of explosive activity is impelling to build tools for hazard assessment at open-conduit volcanoes: machine learning techniques are now a feasible choice. During the summer of 2019, Stromboli experienced two paroxysmal eruptions that occurred in two different volcanic phases, which gave us the possibility to conceive and test an early-warning algorithm on a real use case: the paroxysm on July, 3 was clearly preceded by smaller and less perceptible changes in the volcano dynamics, while the second paroxysm, on August 28 concluded the eruptive phase. Among the changes observed in the weeks preceding the July paroxysm one of the most significant is represented by the shape variation of the ordinary minor explosions, filtered in the very long period (VLP 2–50 s) band, recorded by the Sacks-Evertson strainmeter installed near the village of Stromboli. Starting from these observations, the usage of two independent methods (an unsupervised machine learning strategy and a cross-correlation algorithm) to classify strain transients falling in the ultra long period (ULP 50–200 s) frequency band, allowed us to validate the robustness of the approach. This classification leads us to establish a link between VLP and ULP shape variation forms and volcanic activity, especially related to the unforeseen 3 July 2019 paroxysm. Previous warning times used to precede paroxysms at Stromboli are of a few minutes only. For paroxysmal events occurring outside any long-lasting eruption, the initial success of our approach, although applied only to the few available examples, could permit us to anticipate this time to several days by detecting medium-term strain anomalies: this could be crucial for risk mitigation by prohibiting access to the summit. Our innovative analysis of dynamic strain may be used to provide an early-warning system also on other open conduit active volcanoes.en_US
dc.language.isoEnglishen_US
dc.publisher.nameFrontiers Media S.A.en_US
dc.relation.ispartofFrontiers in Earth Scienceen_US
dc.relation.ispartofseries/10 (2022)en_US
dc.rightsAttribution-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/us/*
dc.subjectearly warning systemen_US
dc.subjectSOMen_US
dc.subjectcross-correlationen_US
dc.subjectVLP and ULP signalsen_US
dc.subjectStromboli, strain dataen_US
dc.titleDynamic strain anomalies detection at Stromboli before 2019 vulcanian explosions using machine learningen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber862086en_US
dc.identifier.doi10.3389/feart.2022.862086en_US
dc.description.obiettivoSpecifico4V. Processi pre-eruttivien_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn2296-6463en_US
dc.contributor.authorRomano, Pierdomenico-
dc.contributor.authorDi Lieto, Bellina-
dc.contributor.authorScarpetta, Silvia-
dc.contributor.authorRossetti, Ilenia-
dc.contributor.authorLinde, Alan-
dc.contributor.authorScarpa, Roberto-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentDipartimento di Fisica “E.R. Caianiello”, Università di Salerno, Fisciano, Italyen_US
dc.contributor.departmentINFN Gruppo Coll, di Salerno, Unità di Napoli, Salerno, Italyen_US
dc.contributor.departmentEarth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, United Statesen_US
dc.contributor.departmentDipartimento di Fisica “E.R. Caianiello”, Università di Salerno, Fisciano, Italyen_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptINFN Gruppo Coll, di Salerno, Unità di Napoli, Salerno, Italy-
crisitem.author.deptUniversità di Salerno, Dipartimento di Fisica "E.R. Caianiello", Salerno, Italy-
crisitem.author.orcid0000-0002-2380-0567-
crisitem.author.orcid0000-0001-8093-3051-
crisitem.author.orcid0000-0003-4189-0065-
crisitem.author.orcid0000-0001-5882-5011-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
feart-10-862086.pdfOpen Access published article5.18 MBAdobe PDFView/Open
Show simple item record

Page view(s)

119
checked on Sep 14, 2024

Download(s)

13
checked on Sep 14, 2024

Google ScholarTM

Check

Altmetric