Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/16095
DC FieldValueLanguage
dc.date.accessioned2023-02-02T10:34:39Z-
dc.date.available2023-02-02T10:34:39Z-
dc.date.issued2022-11-26-
dc.identifier.urihttp://hdl.handle.net/2122/16095-
dc.description.abstractSurface rupturing data from the historical earthquakes is used for obtaining empirical regression parameters for fault displacement hazard assessment. This paper represents an additional compilation and analysis effort, extending the first version of the SUrface Ruptures due to Earthquake (SURE) database. This new release contains slip measurements and mapped surface rupture traces of 50 surface rupturing earthquakes of reverse, normal, and strike-slip kinematics occurred all over the world between 1872 and 2019. As a novelty, a ranking scheme of the rupture features is applied to all the traces and slip measurements in the database. Fault ranking introduces geology as a primary analysis tool and allows the end user to obtain regression parameters suitable for the specific geological conditions at the site of interest. SURE 2.0 dataset consists of a table containing the background information about each earthquake, a table containing the slip measurement data of each event, and a joint shapefile containing all the surface rupture traces of the events in the database.en_US
dc.language.isoEnglishen_US
dc.publisher.nameNature PGen_US
dc.relation.ispartofScientific Dataen_US
dc.relation.ispartofseries/9 (2022)en_US
dc.rightsAttribution-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/us/*
dc.titleSURE 2.0 - New release of the worldwide database of surface ruptures for fault displacement hazard analysesen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber729en_US
dc.identifier.doi10.1038/s41597-022-01835-zen_US
dc.relation.references1. Youngs, R. R. et al. A methodology for probabilistic fault displacement hazard analysis (PFDHA). Earthq. Spectra. 19(1), 191–219, https://doi.org/10.1193/1.1542891 (2003). 2. Baize, S. et al. A worldwide and unified database of surface ruptures (SURE) for fault displacement hazard analyses. Seismol Res. Lett. 91, 499–520. https://doi.org/10.1785/0220190144 2019 (2020). 3. Nurminen, F. et al. SURE 2.0. Zenodo https://doi.org/10.5281/zenodo.7020265 (2022). 4. Nurminen, F. et al. Probability of occurrence and displacement regression of distributed surface rupturing for reverse earthquakes. Front. Earth Sci. 8, https://doi.org/10.3389/feart.2020.581605 (2020). 5. Sarmiento, A. et al. Fault displacement hazard initiative database. https://doi.org/10.34948/N36P48 (2021). 6. Petersen, M. D. et al. Fault displacement hazard for strike-slip faults. Bull. Seismol. Soc. Am. 101(2), 805–825, https://doi. org/10.1785/0120100035 (2011). 7. Civico, R. et al. Surface ruptures following the 30 October 2016 Mw 6.5 Norcia earthquake, Central Italy. J. Maps 14, 151–160, https://doi.org/10.1080/17445647.2018.1441756 (2018). 8. Rymer, M. J. et al. Triggered surface slips in southern California associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, earthquake, Report No. 2010–1333, Open-File Report. Reston, VA., https://doi.org/10.3133/ofr20101333. 9. Yeats, R. S. Active faults related to folding, in: Active Tectonics: Impact on Society, The National Academic Press, Washington, 280 pp., https://doi.org/10.17226/624 (1986). 10. Boncio, P., Liberi, F., Caldarella, M. & Nurminen, F. Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning. Nat. Hazards Earth Syst. Sci. 18, 241–256, https://doi.org/10.5194/nhess-18-241-2018 (2018). 11. Philip, H. & Meghraoui, M. Structural analysis and interpretation of the surface deformation of the El Asnam earthquake of October 10, 1980. Tectonics. 2, 17–49, https://doi.org/10.1029/tc002i001p00017 (1983). 12. Sayab, M. & Khan, M. A. Temporal evolution of surface rupture deduced from coseismic multi-mode secondary fractures: Insights from the October 8, 2005 (Mw 7.6) Kashmir earthquake, NW Himalaya. Tectonophysics. 493, 58–73, https://doi.org/10.1016/j. tecto.2010.07.001 (2010). 13. Villani, F. et al. A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy, Sci. Data. 5, https://doi.org/10.1038/sdata.2018.49 (2018). 14. Slemmons, D. B., Vittori, E., Jayko, A. S., Carver, G. A. & Bacon S. N. Quaternary fault and lineament map of Owens Valley, Inyo County, eastern California, Map Chart 96, 25 pp., Geol. Soc. of Am., https://doi.org/10.1130/2008.MCH096 S (2008). 15. Beanland, S. & Clark, M. M. The Owens Valley fault zone, eastern California, and surface faulting associated with the 1872 earthquake US Geol. Survey Bulletin. 1982, https://doi.org/10.3133/b1982 (1994). 16. Suter, M. Rupture of the Pitáycachi Fault in the 1887 Mw 7.5 Sonora, Mexico earthquake (southern Basin-and-Range Province): Rupture kinematics and epicenter inferred from rupture branching patterns. J. Geophys. Res. Solid Earth 120, 617–641, https://doi. org/10.1002/2014JB011244 (2015). 17. Suter, M. Structural configuration of the Teras fault (southern Basin and Range Province) and its rupture in the 3 May 1887 MW 7.5 Sonora, Mexico earthquake. Revista Mexicana de Ciencieas Geologicas. 25(1), 179–195, https://doi.org/10.5281/zenodo.2528980 (2008). 18. Suter, M. Structural Configuration of the Otates Fault (Southern Basin and Range Province) and Its Rupture in the 3 May 1887 MW 7.5 Sonora, Mexico, Earthquake. Bull. Seismol. Soc. Am. 98(6), 2879–2893, https://doi.org/10.1785/0120080129 (2008). 19. Arrowsmith, J. R. et al. Surface rupture of the 1911 Kebin (Chon–Kemin) earthquake, Northern Tien Shan, Kyrgyzstan. Geol. Soc. Lond. Spec. Publ. 432, 233–253, https://doi.org/10.1144/SP432.10 (2017). 20. Wallace, R. E. Fault Scarps Formed During the Earthquakes of October 2, 1915, in Pleasant Valley, Nevada, and Some Tectonic Implications, in: Faulting Related to the 1915 Earthquakes in the Pleasant Valley, Nevada, USGS Professional Paper 1274-A, B. USGS, Washington, pp. 1–33, https://doi.org/10.3133/pp1274AB (1984). 21. USGS Database of Quaternary Faults and Folds. Access in, https://www.usgs.gov/programs/earthquake-hazards/faults 2022. 22. Bellier, O., Dumont, J. F., Sébrier, M. & Merchier, J. L. Geological constraints on the kinematics and fault-plane solution of the Quiches fault zone reactivated during the 10 november 1946 Ancash earthquake, Northern Peru. Bull. Seismol. Soc. Am. 81(2), 468–490, https://doi.org/10.1785/BSSA0810020468 (1991). 23. Gianella, V. Earthquake and faulting Fort Sage mountains, California, December, 1950. Bull. Seismol. Soc. Am. 47(3), 173–177, https://doi.org/10.1785/BSSA0470030173 (1957). 24. Caskey, S. J., Wesnousky, S. G., Zhang, P. & Slemmons, D. B. Surface Faulting of the 1954 Fairview Peak: (Ms 7.2) and Dixie Valley (Ms 6.8) Earthquakes, Central Nevada. Bull. Seismol. Soc. Am. 86(3), 761–787, https://doi.org/10.1785/BSSA0860030761 (1996). 25. U.S. Geological Survey The Hebgen Lake, Montana, earthquake of August 17, 1959, Geological Survey Professional Paper 435, U. S. Govt. Print. Off. https://doi.org/10.3133/pp435 (1964). 26. Witkind, I. J., Myers, W. B., Hadley, J. B., Hamilton, W. & Fraser, G. D. Geologic features of the earthquake at Hebgen Lake, Montana, August 17, 1959. Bull. Seismol. Soc. Am. 52(2), 163–180, https://doi.org/10.1785/BSSA0520020163 (1962). 27. Johnson, K. L., Nissen, E. & Lajoie, L. Surface rupture morphology and vertical slip distribution of the 1959 Mw 7.2 Hebgen Lake (Montana) earthquake from airborne lidar topography. Journal of Geophysical Research: Solid Earth 123, 8229–8248, https://doi. org/10.1029/2017JB015039 (2018). 28. Clark, M. M. Surface rupture along the Coyote Creek fault, in: The Borrego Mountain Earthquake of April 9, 1968, Geological Survey Professional Paper. US Department of the interior, Washington, pp. 55–86 (1972). 29. Gordon, F. R. & Lewis, J. D. The Meckering and Calingiri Earthquakes October 1968 and March 1970; Geological Survey of Western Australia: Perth, Australia (1980). 30. King, T. R., Quigley, M. & Clark, D. Surface-Rupturing Historical Earthquakes in Australia and Their Environmental Effects: New Insights from Re-Analyses of Observational Data. Geosciences 9, 408, https://doi.org/10.3390/geosciences9100408 (2019). 31. Bonilla, M. G. et al. Surface faulting, in The San Fernando, California, earthquake of February 9, 1971. Washington, United States: US Geological Survey, Vol. 733, 55–76 (1971). 32. Kamb, B. et al. Pattern of faulting and nature of fault movement in the San Fernando earthquake in the San Fernando, California, earthquake of February 9, 1971. Washington, United States: US Geological Survey, Vol. 733, 41–54 (1971). 33. Clark, M. M., Sharp, R. V., Castle, R. O. & Harsh, P. W. Surface faulting near lake Oroville, California in August, 1975. Bull. Seismol. Soc. Am. 66(4), 1101–1110 (1976). 34. Papazachis, B., Mountrakis, D., Psilovikos, A. & Leventakis, G. Surface fault traces and fault plane solutions of the May-June 1978 major shocks In the Thessaloniki area, Greece. Tectonophysics 53, 171–183 (1979). 35. Sharp, R. V. et al. Surface faulting in the central Imperial Valley, in: The Imperial Valley, California, Earthquake of October 15, 1979, Geological Survey Professional Paper. US Department of the interior, Washington, pp. 119–144 (1982). 36. Pezzopane, S. K. & Dawson, T. E. Seismotectonic Framework and Characterization of Faulting at Yucca Mountain, Nevada. Chapter 9: Fault Displacement Hazard: A Summary Of Issues And Information, Administrative Report for the US Department of Energy. US Geological Survey (1996). 37. Yielding, G. et al. Relations between surface deformation, fault geometry, seismicity, and rupture characteristics during the El Asnam (Algeria) earthquake of the 10 October 1980. Earth Planet Sci. Lett. 56, 287–304, https://doi.org/10.1016/0012- 821X(81)90135-7 (1981). 38. Meghraoui, M., Jaegy, R., Lammali, K. & Albarède, F. Late Holocene earthquake sequences on the El Asnam (Algeria) thrust fault. Earth Planet Sci. Lett. 90, 187–203, https://doi.org/10.1016/0012-821x(88)90100-8 (1988). 39. Meghraoui, M., Philip, H., Albarede, F. & Cisternas, A. Trench investigations through the trace of the 1980 El Asnam thrust fault: evidence for paleoseismicity. Bull. Seismol. Soc. Am. 78(2), 979–999 (1988). 40. Jackson, J. A. et al. Seismicity, normal faulting, and the geomorphological development of the Gulf of Corinth (Greece)” the Corinth earthquakes of February and March 1981. Earth and Planetary Science Letters 57, 377–397 (1982). 41. Collier, R. E. L. et al. Paleoseismicity of the 1981 Corinth earthquake fault: Seismic contribution to extensional strain in central Greece and implications for seismic hazard. J. Geophys. Res. 103(B12), 30,001–30,01 (1998). 42. Rymer, M. J., Kendrick, K. J., Lienkaemper, J. J. & Clark, M. M. Surface rupture on the Nunez fault during the Coalinga earthquake sequence in: The Coalinga, California, earthquake of May 2, 1983. Editors Rymer, M. J., and Ellsworth, W. L. (Denver, CO: US Geological Survey), 299–318, Prof. Paper 1487 (1990). 43. Crone, A. J. et al. Surface faulting accompanying the Borah Peak earthquake and segmentation of the lost river fault, Central Idaho. Bull. Seismol. Soc. Am. 77(3), 739–770 (1987). 44. Fredrich, J., McCaffrey, R. & Denham, D. Source parameters of seven large Australian earthquakes determined by body waveform inversion. Geophys. J. Int. 95, 1–13, https://doi.org/10.1111/j.1365-246x.1988.tb00446.x (1988). 45. Bowman, J. R., and Barlow, B. C. Surveys of the fault scarp of the 1986 Marryat Creek, south Australia, earthquake. Canberra, AU: Bureau of mineral Resources, Geology and Geophysics, BMR Record 1991/190, 12 (1991). 46. Machette, M. N., Crone, A. J. & Bowman, J. R. Geologic investigations of the 1986 Marryat Creek, Australia, earthquakes— Implications for paleoseismicity in stable continental regions. Denver, CO: US Geological Survey, Bull. 2032-B, 29 (1993). 47. Beanland, S., Berryman, K. R. & Blick, G. H. Geological investigations of the 1987 Edgecumbe earthquake, New Zealand. New Zealand Journal of Geology and Geophysics. 32, 73–91 (1989). 48. Hudnut, K. et al. Surface ruptures on cross-faults in the 24 November 1987 Superstition Hills, California, earthquake sequence. Bull. Seism. Soc. Am. 79, 282–296, https://doi.org/10.1785/BSSA0790020282 (1989). 49. Sharp, R. V. et al. Surface faulting along the Superstition Hills fault zone and nearby faults associated with the earthquakes of 24 November 1987. Bull. Seismol. Soc. Am. 79, 252–281 (1989). 50. McCaffrey, R. Teleseismic investigation of the January 22, 1988 Tennant Creek, Australia, earthquakes. Geophys. Res. Lett. 16, 413–416, https://doi.org/10.1029/gl016i005p00413 (1989). 51. Crone, A. J., Machette, M. N. & Bowman, J. R. Geologic investigations of the 1988 Tennant Creek, Australia, earthquakes– Implications for paleoseismicity in stable continental regions. Denver, CO: US Geological Survey, Bull. 2032-A, 51 (1992). 52. Philip, H. et al. The Armenian earthquake of 1988 December 7: faulting and folding, neotectonics and palaeoseismicity. Geophys. J. Int. 110, 141–158, https://doi.org/10.1111/j.1365-246x.1992.tb00718.x (1992). 53. Haessler, H., Deschamps, A., Dufumier, H., Fuenzalida, H. & Cisternas, A. The rupture process of the Armenian earthquake from broad-band teleseismic body wave records. Geophys. J. Int. 109, 151–161, https://doi.org/10.1111/j.1365-246x.1992.tb00085.x (1992). 54. Hart, E. W., Bryant, W. A. & Treiman, J. A. Surface faulting associated with the June 1992 Landers earthquake, California. California Geology 46, 10–16 (1993). 55. Seeber, L. et al. The 1993 Killari earthquake in central India: a new fault in Mesozoic basalt flows? J. Geophys. Res. 101, 8543–8560, https://doi.org/10.1029/95JB01865 (1996). 56. Takao, M., Tsuchiyama, J., Annaka, T. & Kurita, T. Application of Probabilistic Fault Displacement Hazard Analysis in Japan. J. Jpn. Assoc. Earthq. Eng. 13, 17–36, https://doi.org/10.5610/jaee.13.17 (2013). 57. Hartleb, R. D. et al. Surface Rupture and Slip Distribution along the Karadere Segment of the 17 August 1999 İzmit and the Western Section of the 12 November 1999 Düzce, Turkey, Earthquakes. Bull. Seismol. Soc. Am. 92, 67–78, https://doi. org/10.1785/0120000829 (2002). 58. Langridge, R. M. et al. Geometry, Slip Distribution, and Kinematics of Surface Rupture on the Sakarya Fault Segment during the 17 August 1999 İzmit, Turkey, Earthquake. Bull. Seismol. Soc. Am. 92, 107–125, https://doi.org/10.1785/0120000804 (2002). 59. Wesnousky, S. G. Displacement and geometrical characteristics of earthquake surface ruptures: issues and implications for seismic hazard analysis and the earthquake rupture process. Bull. Seismol. Soc. Am. 98, 1609–1632, https://doi.org/10.1785/0120070111 (2008). 60. Kelson, K. I., Kang, K. H., Page, W. D., Lee, C. T. & Cluff, L. S. Representative styles of deformation along the Chelungpu Fault from the 1999 Chi-Chi (Taiwan) earthquake: geomorphic characteristic and responses of man-made structures. B. Seismol. Soc. Am. 91, 930–952, https://doi.org/10.1785/0120000741 (2001). 61. Kelson, K. I., Koehler, R. D., Kang, K.-H., Bray, J. D. & Cluff, L. S. Surface deformation produced by the 1999 Chichi (Taiwan) earthquake and interactions with built structures. Walnut Creek, CA: William Lettis and Associates, Award No. 01HQ-GR-0122, 21 (2003). 62. Angelier, J., Lee, J.-C., Chu, H.-T. & Hu, J.-C. Reconstruction of fault slip of the September 21st, 1999, Taiwan earthquake in the asphalted surface of a car park, and co-seismic slip partitioning. J. Struct. Geol. 25, 345–350, https://doi.org/10.1016/s0191- 8141(02)00038-x (2003). 63. Bilham, R. & Yu, T.-T. The morphology of thrust faulting in the 21 September 1999, Chichi, Taiwan earthquake. J. Asian Earth Sci. 18, 351–367, https://doi.org/10.1016/s1367-9120(99)00071-1 (2000). 64. Chen, W. C., Chu, H. T. & Lai, T. C. Surface ruptures of the Chi-Chi earthquake in the Shihgang dam area, Special issue for the Chi-Chi earthquake, 1999, Central geological survey, MOEA, Taipei, Taiwan. Spec. Publ. 12, 41–62 [in Chinese with English abstract] (2000). 65. Huang, C., Chan, Y.-C., Hu, J.-C., Angelier, J. & Lee, J.-C. Detailed surface co-seismic displacement of the 1999 Chi-Chi earthquake in western Taiwan and implication of fault geometry in the shallow subsurface. J. Struct. Geol. 30, 1167–1176, https://doi. org/10.1016/j.jsg.2008.06.001 (2008). 66. Huang, W. J. et al. Surface deformation models of the 1999 Chi–Chi earthquake between Tachiachi and Toupienkengchi, central Taiwan, Special Issue for the Chi-Chi Earthquake, 1999, Central Geological Survey, MOEA, Taipei, Taiwan, Spec. Publ., 12, pp. 63–87. [in Chinese with English abstract] (2000). 67. Lee, J. C. et al. A vertical exposure of the 1999 surface rupture of the Chelungpu Fault at Wufeng, Western Taiwan: structural and paleoseismic implications for an active thrust fault. Bull. Seismol. Soc. Am. 91(5), 914–929 (2001). 68. Lee, Y.-H. et al. Slip vectors of the surface rupture of the 1999 Chi-Chi earthquake, western Taiwan. J. Struct. Geol. 25, 1917–1931, https://doi.org/10.1016/s0191-8141(03)00039-7 (2003). 69. Lee, Y.-H. et al. Revealing coseismic displacements and the deformation zones of the 1999 Chi-Chi earthquake in the Tsaotung area, central Taiwan, using digital cadastral data. J. Geophys. Res. 115, B03419, https://doi.org/10.1029/2009JB006397 (2010). 70. Lin, W. H. On surface deformations from the Chi-Chi earthquake in the Shihkang and Chutzekeng areas, special issue for the Chi- Chi earthquake, 1999, Central Geological Survey, MOEA, Taipei, Taiwan. Spec. Publ. 12, 1–17. [in Chinese with English abstract] (2000). 71. Ota, Y. et al. Style of the surface deformation by the 1999 Chichi earthquake at the central segment of Chelungpu fault, Taiwan, with special reference to the presence of the main and subsidiary faults and their progressive deformation in the Tsauton area. J. Asian Earth Sci. 31, 214–225, https://doi.org/10.1016/j.jseaes.2006.07.030 (2007). 72. Central Geological Survey, MOEA. Available at: MOEA at http://gis.moeacgs.gov.tw/gwh/gsb97-1/sys8/index.cfm (Accessed October, 2017). 73. Treiman, J. A., Kendrick, K. J., Bryant, W. A., Rockwell, T. K. & McGill, S. F. Primary Surface Rupture Associated with the Mw 7.1 16 October 1999 Hector Mine Earthquake, San Bernardino County, California. Bull. Seismol. Soc. Am. 92, 1171–1191, https://doi. org/10.1785/0120000923 (2002). 74. Haeussler, P. J. et al. Surface Rupture and Slip Distribution of the Denali and Totschunda Faults in the 3 November 2002 M 7.9 Earthquake, Alaska. Bull. Seismol. Soc. Am. 94, S23–S52, https://doi.org/10.1785/0120040626 (2004). 75. Avouac, J.-P., Ayoub, F., Leprince, S., Konca, O. & Helmberger, D. V. The 2005 Mw 7.6 Kashmir earthquake: sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth Planet Sci. Lett. 249, 514–528, https://doi.org/10.1016/j.epsl.2006.06.025 (2006). 76. Kaneda, H. et al. Surface rupture of the 2005 Kashmir, Pakistan, Earthquake and its active tectonic implications. Bull. Seismol. Soc. Am. 98, 521–557, https://doi.org/10.1785/0120070073 (2008). 77. Kumahara, Y. & Nakata, T. Recognition of active faults generating the 2005 Pakistan earthquake based on interpretation of the CORONA satellite photographs. E - J. GEO. 2, 72–85 [in Japanese with English abstract]. https://doi.org/10.4157/ejgeo.2.72 (2007). 78. Xu, X. et al. Co-seismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China. Geology 37, 515–518, https://doi.org/10.1130/g25462a.1 (2009). 79. Liu-Zeng, J. et al. Co-seismic ruptures of the 12 May 2008, Ms 8.0 Wenchuan earthquake, Sichuan: east–west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet. Earth Planet Sci. Lett. 286, 355–370, https://doi.org/10.1016/j. epsl.2009.07.017 (2009). 80. Liu-Zeng, J. et al. Surface ruptures on the transverse Xiaoyudong fault: a significant segment boundary breached during the 2008 Wenchuan earthquake, China. Tectonophysics 580, 218–241, https://doi.org/10.1016/j.tecto.2012.09.024 (2012). 81. Yu, G.-H. et al. Relationship between the localization of surface ruptures and building damages associated with the Wenchuan 8.0 earthquake. Chin. J. Geophys. 52, 1294–1311, https://doi.org/10.1002/cjg2.1455 (2009). 82. Yu, G. et al. Fault-scarp features and cascading-rupture model for the Mw 7.9 Wenchuan earthquake, eastern Tibetan plateau, China. Bull. Seismol. Soc. Am. 100, 2590–2614, https://doi.org/10.1785/0120090255 (2010). 83. Zhou, Q. et al. Width distribution of the surface ruptures associated with the Wenchuan earthquake: implication for the setback zone of the seismogenic faults in post-earthquake reconstruction. Bull. Seismol. Soc. Am. 100, 2660–2668, https://doi. org/10.1785/0120090293 (2010). 84. Zhang, Y. et al. Surface ruptures induced by the Wenchuan earthquake: their influence widths and safety distances for construction sites. Eng. Geol. 166, 245–254, https://doi.org/10.1016/j.enggeo.2013.09.010 (2013). 85. Chen, G. H. et al. Quantitative analysis of the co-seismic surface rupture of the 2008 Wenchuan earthquake, sichuan, China along the Beichuan Yingxiu fault. Seismol. Geol. 30, 723–738 [in Chinese with English abstract] (2008). 86. Liu-Zeng, J. et al. Detailed mapping of surface rupture of the Wenchuan Ms 8.0 earthquake near Hongkou and seismotectonic implications. Quat. Sci. 30, 1–29 [in Chinese with English abstract] (2010). 87. Wang, H. et al. Determination of horizontal shortening and amount of reverse-faulting from trenching across the surface rupture of the 2008 Mw 7.9 Wenchuan earthquake, China. Tectonophysics 491, 10–20, https://doi.org/10.1016/j.tecto.2010.03.019 (2010). 88. Xu, X. et al. The Ms 8.0 Wenchuan earthquake surface ruptures and its seismogenic structure. Seismol. Geol. 30, 597–629 [in Chinese with English abstract] (2008). 89. Zhang, J. Y., Bo, J. S., Xu, G. D. & Huang, J. Y. Buildings setbacks research from surface-fault-rupture statistical analysis. Amministrare 204–208, 2410–2418, https://doi.org/10.4028/www.scientific.net/amm.204-208.2410 (2012). 90. Zhang, Y. S., Sun, P., Shi, J. S., Yao, X. & Xiong, T. Y. Investigation of rupture influenced zones and their corresponding safe distances for reconstruction after 5.12 Wenchuan earthquake. Eng. Geol. 18, 312–319 [in Chinese with English abstract] (2010). 91. Fielding, E. J. et al. Kinematic Fault Slip Evolution Source Models of the 2008 M7.9 Wenchuan Earthquake in China from SAR Interferometry, GPS and Teleseismic Analysis and Implications for Longmen Shan Tectonics. Geophys. J. Int. https://doi. org/10.1093/gji/ggt155 (2013). 92. Ran et al. Paleoseismic evidence and repeat time of large earthquakes at three sites along the Longmenshan fault zone. Tectonophysics 491(1–4), 141–153, https://doi.org/10.1016/j.tecto.2010.01.009 (2010). 93. Ran et al. Paleoseismic events and recurrence interval along the Beichuan–Yingxiu fault of Longmenshan fault zone, Yingxiu, Sichuan, China. Tectonophysics 584, 81–90, https://doi.org/10.1016/j.tecto.2012.07.013 (2013). 94. Boncio, P. et al. Coseismic ground deformation of the 6 April 2009 L’Aquila earthquake (central Italy, Mw 6.3). Geophys. Res. Lett. 37, L06308, https://doi.org/10.1029/2010GL042807 (2010). 95. Cinti, F. R., Civico, R., Blumetti, A. M., Guerrieri, L. & Leoni, G. INGV - ISPRA joint Surface Faulting Database - Mw 6.1, 2009, April 6th L’Aquila earthquake (Central Italy). PANGAEA https://doi.org/10.1594/PANGAEA.889132 (2018). 96. Champenois, J. et al. Evidences of Surface Rupture Associated With a Low-Magnitude (Mw 5.0) Shallow Earthquake in the Ecuadorian Andes: Andean earthquake surface rupture. J. Geophys. Res. Solid Earth 122, 8446–8458, https://doi. org/10.1002/2017JB013928 (2017). 97. Fletcher, J. M. et al. Assembly of a large earthquake from a complex fault system: Surface rupture kinematics of the 4 April 2010 El Mayor–Cucapah (Mexico) Mw 7.2 earthquake. Geosphere 10, 797–827, https://doi.org/10.1130/GES00933.1 (2014). 98. Litchfield, N. J., Van Dissen, R. J., Hornblow, S., Quigley, M. & Archibald, G. C. Detailed analysis of Greendale Fault ground surface rupture displacements and geometries, GNS Science Report 2013/18 (2014). 99. Quigley, M. et al. Surface rupture during the 2010 Mw 7.1 Darfield (Canterbury) earthquake: Implications for fault rupture dynamics and seismic-hazard analysis. Geology 40, 55–58, https://doi.org/10.1130/G32528.1 (2012). 100. Clark, D., McPherson, A., Allen, T. & De Kool, M. Coseismic Surface Deformation Caused by the 23 March 2012 Mw 5.4 Ernabella (Pukatja) Earthquake, Central Australia: Implications for Fault Scaling Relations in Cratonic Settings. Bull. Seismol. Soc. Am. 104(1), 24–39, https://doi.org/10.1785/0120120361 (2014). 101. Ponti, D. J., Rosa, C. M., & Blair, J. L. The Mw 6.0 South Napa earthquake of August 24, 2014—Observations of surface faulting and ground deformation, with recommendations for improving post-earthquake field investigations US Geological Survey, Open-File Report 2019-1018, 50, https://doi.org/10.3133/ofr20191018 (2019). 102. Okada, S., Ishimura, D., Niwa, Y. & Toda, S. The first surface rupturing earthquake in 20 years on a HERP active fault is not characteristic: the 2014 Mw 6.2 Nagano event along the northern Itoigawa–Shizuoka tectonic line. Seismol Res. Lett. 86, 1–14, https://doi.org/10.1785/0220150052 (2015). 103. Katsube A., Kondo, H., Taniguchi, K. & Kase Y. Surface rupture and slip associated with the 2014 Nagano-ken Hokubu earthquake (Mw6.2), Jour. Geol. Soc. Japan, 123 (1), 1–21, https://doi.org/10.5575/geosoc.2016.0048 [in Japanese, with English abstract] (2017). 104. Ishimura, D., Okada, S., Niwa, Y. & Toda, S. The surface rupture of the 22 November 2014 Nagano-ken-hokubu earthquake (Mw 6.2), along the Kamishiro fault, Japan, Active Fault Res. 43, 95–108. [in Japanese, with English abstract] (2015). 105. Lin, A., Sano, M., Yan, B. & Wang, M. Co-seismic surface ruptures produced by the 2014 Mw 6.2 Nagano earthquake, along the Itoigawa–Shizuoka tectonic line, central Japan. Tectonophysics 656, 142–153, https://doi.org/10.1016/j.tecto.2015.06.018 (2015). 106. Ishimura, D. et al. 3D surface displacement and surface ruptures associated with the 2014 Mw 6.2 Nagano earthquake using differential Lidar. Bull. Seismol. Soc. Am. 109(2), 780–796, https://doi.org/10.1785/0120180020 (2019). 107. Shirahama, Y. et al. Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, central Kyushu, Japan. Earth, Planets and Space 68(1), 1–12 (2016). 108. AIST Active Fault Database, 2019 edition. National Institute of Advanced Industrial Science and Technology (AIST), Research Information Disclosure Database DB095, National Institute of Advanced Industrial Science and Technology. Integration of surface change information associated with the 2016 Kumamoto Earthquake. “Comprehensive Active Fault Survey based on the 2016 Kumamoto Earthquake, Fy2016-30 Results Report”, Research and Development Bureau, Ministry of Education, Culture, Sports, Science and Technology, Kyushu University. Data by Yasuo Awata, Yoshiki Shirahama, Yasuhiro Kumahara, available at https:// gbank.gsj.jp/activefault/update_info (2019). 109. Polcari, M., Albano, M., Atzori, S., Bignami, C. & Stramondo, S. The Causative Fault of the 2016 Mwp 6.1 Petermann Ranges Intraplate Earthquake (Central Australia) Retrieved by C- and L-Band InSAR Data. Remote Sens. 10(8), 1311, https://doi. org/10.3390/rs10081311 (2018). 110. Brozzetti, F. et al. High-resolution field mapping and analysis of the August–October 2016 coseismic surface faulting (Central Italy earthquakes): Slip distribution, parameterization, and comparison with global earthquakes. Tectonics 38, 417–439, https://doi. org/10.1029/2018TC005305 (2019). 111. Lavecchia, G. et al. Ground deformation and source geometry of the 24 August 2016 Amatrice earthquake (Central Italy) investigated through analytical and numerical modeling of DInSAR measurements and structural‐geological data. Geophysical Research Letters, 43, https://doi.org/10.1002/2016GL071723 (2016). 112. Aguirre, E. et al. Earthquake surface ruptures on the altiplano and geomorphological evidence of normal faulting in the December 2016 (Mw 6.1) Parina earthquake, Peru, Journal of South American Earth Sciences, 106, https://doi.org/10.1016/j. jsames.2020.103098 (2021). 113. Ponti, D. J. et al. Digital datasets documenting surface fault rupture and ground deformation features produced by the Ridgecrest M6.4 and M7.1 earthquake sequence of July 4 and 5, 2019. U.S. Geological Survey https://doi.org/10.5066/P9BZ5IJ9 (2020). 114. DuRoss et al. Surface Displacement Distributions for the July 2019 Ridgecrest, California, Earthquake Ruptures. Bull. Seismol. Soc. Am. 110(4), 1400–1418, https://doi.org/10.1785/0120200058 (2020). 115. Ritz, J. F. et al. Surface rupture and shallow fault reactivation during the 2019 Mw 4.9 Le Teil earthquake, France. Comm. Earth Environ. 1 (10) (2020).en_US
dc.description.obiettivoSpecifico2T. Deformazione crostale attivaen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn2052-4463en_US
dc.contributor.authorNurminen, Fiia-
dc.contributor.authorBaize, Stéphane-
dc.contributor.authorBoncio, Paolo-
dc.contributor.authorBlumetti, Anna Maria-
dc.contributor.authorCinti, Francesca Romana-
dc.contributor.authorCivico, Riccardo-
dc.contributor.authorGuerrieri, Luca-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento DiSPUTer, Università di Chieti-Pescara, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptISPRA-
crisitem.author.orcid0000-0002-7656-1790-
crisitem.author.orcid0000-0003-1068-3223-
crisitem.author.orcid0000-0002-5015-2155-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Nurminenetal.2022_Scientificdata.pdfOpen Access published article4.07 MBAdobe PDFView/Open
Show simple item record

Page view(s)

70
checked on Apr 24, 2024

Download(s)

10
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric