Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/16091
DC FieldValueLanguage
dc.date.accessioned2023-02-02T09:59:08Z-
dc.date.available2023-02-02T09:59:08Z-
dc.date.issued2023-
dc.identifier.urihttp://hdl.handle.net/2122/16091-
dc.description.abstractIn this study, we explore the impact of using different Moho surfaces on the reconstruction of the upper mantle geophysical parameters. The study area is the subsurface of the Antarctica continent. Using the optimization program of Sequential Integrated Inversion (SII) and the gravity anomalies synthetized by a global Gravity Field Model (GFM), we reconstructed the upper mantle density and the related 3D distribution of the rho-v_SV couplings down to the depth of 400 km, with a lateral resolution of 0.5° × 0.5°. Here, we present the results obtained for four models, built with four different Moho surfaces. A correlation analysis showed that different Moho structures affect the optimization of the intensity of the anomalies and the rho-v_SV couplings. The possibility of having both a density model and a 3D distribution of the rho-v_SV couplings enables us to highlight several significant features for all models that are not disclosed by seismic tomography. Among them, a trend of positive, presumably compositional anomalies suggests the contribution of the Lambert Rift System (LRS) to the Gamburstev Mountains (GSM) uplift, which in turn may have influenced the formation of the Maud Subglacial Basin (MSB). A continuous low-density anomaly and positive rho-v_SV phase coupling anomaly, extending from the northwestern side of the Transantarctic Mountains (TAM) to Victoria Land, support the thermal buoyancy force as the causative element of the formation of the TAM. A circumscribed negative density anomaly extending up to depth of 365 km, which is associated to a negative variation in the angular coefficients of the rho-v_SV couplings, indicates the presence of an active magmatic system in the upper mantle or a Cenozoic mantle plume beneath the region of Mary Byrd Land (MBL).en_US
dc.description.sponsorshipPNRA project: “Risposta litosferica alla dinamica del mantello e della criosfera” (D.D. n. 2164–14/11/2013 – PdR 2013/B2.06) CINECA ISCRA Class C project (HP10CGC85K).en_US
dc.language.isoEnglishen_US
dc.publisher.nameElsevieren_US
dc.relation.ispartofTectonophysicsen_US
dc.relation.ispartofseries/849 (2023)en_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectAntarctic upper mantleen_US
dc.subjectMoho depths of Antarcticaen_US
dc.subjectIntegrated inversion of seismological and gravity dataen_US
dc.subjectSatellite gravity fielden_US
dc.subjectUpper mantle density of Antarcticaen_US
dc.subjectDensity-velocity relationshipen_US
dc.title3D density structure of upper mantle beneath the Antarctic plate: The influence of Moho depthen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber229724en_US
dc.identifier.URLhttps://www.sciencedirect.com/science/article/pii/S0040195123000227en_US
dc.subject.INGV0.4 Solid Earthen_US
dc.identifier.doi10.1016/j.tecto.2023.229724en_US
dc.relation.referencesAitken, A.R.A., Young, D.A., Ferraccioli, F., Betts, P.G., Greenbaum, J.S., Richter, T.G., Roberts, J.L., Blankenship, D.D., Siegert, M.J., 2014. The subglacial geology of Wilkes Land, East Antarctica. Geophys. Res. Lett. 41, 2390–2400. https://doi.org/ 10.1002/2014GL059405. An, M., Douglas, A.W., Zhao, Y., Feng, M., Nyblade, A.A., Kanao, M., Li, Y., Maggi, A., L´eveque, J.J., 2015a. S-velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves. Geophys. Res. Lett. 120, 359–383. https://doi. org/10.1002/2014JB011332. An, M., Wiens, D.A., Zhao, Y., Feng, M., Nyblade, A., Kanao, M., Li, Y., Maggi, A., L´eveque, J.J., 2015b. Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities. J. Geophys. Res. 120 (12), 8720–8742. https://doi.org/10.1002/2015JB011917. Argus, D.F., Peltier, W.R., Drummond, R., Moore, A.W., 2014. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ICE thicknesses, and relative sea level histories. Geophys. J. Int. 198, 537–563. https://doi.org/10.1093/gji/ggu140. Artemieva, I., 2003. Lithospheric structure, composition and thermal regime of the east European Craton: Implications for the subsidence of the Russian platform. Earth Planet. Sci. Lett. 213, 431–446. Austermann, J., Pollard, D., Mitrovica, J.X., Moucha, R., Forte, A.M., De Conto, R., Rowley, D.B., Raymo, M.E., 2015. The impact of dynamic toopography change on Antarctic ice sheet during the mid-Pliocene warm period. Geology 43, 927–930. https://doi.org/10.1130/G36988.1. Baranov, A., Morelli, A., 2013. The Moho depth map of the Antarctica region. Tectonophysics 609, 299–313. Baranov, A., Morelli, A., 2022. The structure of sedimentary basins of Antarctica and a new three-layer sediment model. Tectonophysics 846, 229662. https://doi.org/ 10.1016/j.tecto.2022.229662. Baranov, A., Tenzer, R., Bagherbandi, M., 2018. Combined Gravimetric-Seismic Crustal Model for Antarctica. Surv. Geophys. 39, 23–56. https://doi.org/10.1007/s10712- 017-9423-5. Baranov, A., Morelli, A., Chuvaev, A., 2021. ANTASed – an Updated Sediment Model for Antarctica. Front. Earth Sc. 9, 722699 https://doi.org/10.3389/feart.2021.722699. Barzaghi, R., Reguzzoni, M., Borghi, A., De Gaetani, C., Sampietro, D., Marotta, A.M., 2015. Global to local moho estimate based on GOCE geopotential model and local gravity Data. In: Proceeding of Hotine-Marussi Symposium Rome 2013, International Association of Geodesy Symposia. Springer, Berlin Heidelberg. https:// doi.org/10.1007/1345_2015_15. ISSN 0939-9585,. Behrendt, J.C., 1999. Crustal and lithospheric structure of the West Antarctic Rift System from geophysical investigations – a review. Glob. Planet. Chang. 23, 25–44. Bindshadler, R., Vonberger, P., Fleming, A., Fox, A., Mullins, J., Binnie, D., Paulsen, S.J., Granneman, B., Gorodetzky, D., 2008. The Landsat image Mosaic of Antarctica. Rem. Sens. Antarctica 112, 4214–4226. https://doi.org/10.1016/j.rse.2008.07.006. Birch, F., 1964. Density and composition of mantle and core. J. Geophys. Res. 69 (20), 4377–4384. https://doi.org/10.1029/JZ069i020p04377. Blakely, R.J., 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge University Press. Block, A.E., Bell, R.E., Studinger, M., 2009. Antarctic crustal thickness from satellite gravity: Implications for the Transantarctic and Gamburstev Subglacial Mountains. Earth Planet. Sci. Lett. 288, 194–203. Boger, S.D., 2011. Antarctica – before and after Gondwana. Gondwana Res. 19, 335–371. Borghi, A., 2022. Moho depths for Antarctica Region by the inversion of ground-based gravity data. Geophl J Int ggac249. https://doi.org/10.1093/gji/ggac249. Borghi, A., Tondi, R., Morelli, A., 2016. GOCE data for a 3-D density model of Antarctica. In: ESA living planet symposium 2016 – Prague 9-13th May. Brenn, G.R., Hansen, S.E., Park, Y., 2017. Variable thermal loading and flexural uplift along the Transantarctic Mountains, Antarctica. Geology 45 (5), 463–466. https:// doi.org/10.1130/G38784.1. Brockmann, J.M., Schubert, T., Mayer-Gürr, T., Schuh, Schuh, W.-D., 2019. The Earth’s Gravity Field as seen by the GOCE Satellite - an Improved Sixth Release Derived with the Time-Wise Approach. https://doi.org/10.5880/ICGEM.2019.003. Chaput, J., Aster, R.C., Huerta, A., Sun, X., Lloyd, A., Wiens, D., Nyblade, A., AnandaKrishnan, S., Winberry, J.P., Wilson, T., 2014. The crustal thickness of West Antarctica. J. Geophys. Res. 119, 378–395. https://doi.org/10.1002/ 2013JB010642. Chisenga, C., Yan, J., Yan, P., 2019. A crustal thckness model of Antarctica calculated in spherical approximation from satellite gravimetric data. Geophys. J. Int. 218, 388–400. https://doi.org/10.1093/gji/ggz154. Dalziel, I.W.E., 2013. Antarctica and supercontinental evolution: clues and puzzles. Earth Environ. Sci. Transact. Royal Soc. Edinburgh 104, 3–16. Dalziel, I.W.E., Elliot, D.H., 1982. West Antarctic: problem child of gondwanaland. Tectonics 1, 3–19. Danesi, S., Morelli, A., 2001. Structure of the upper mantle under the Antarctic Plate from surface wave tomography. Geophys. Res. Lett. 28, 4395–4398. Drinkwater, M.R., Floberghagen, R., Haagmans, R., Muzi, D., Popescu, A., 2003. GOCE: ESA’s first explorer core mission. Space Sci. Rev. 108, 419–432. Dziewonki, A.M., Anderson, D.L., 1981. Preliminary reference earth model. Phys. Earth Planet. Inter. 25, 297–356. Faccenna, C., Rossetti, F., Becker, T.W., Danesi, S., 2008. Recent extension driven by mantle upwelling beneath the Admiralty Mountains (East Antarctica). Tectonics 27. https://doi.org/10.1029/2007TC002197. TC4015. Ferraccioli, F., Finn, C., Jordan, T., Bell, R., Anderson, L., Damaske, D., 2011. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature 479 (7373), 388–392. https://doi.org/10.1038/nature10566. Fl¨ottmann, T., Kleinschmidt, G., 1991. Opposite thrust systems in northern Victoria Land, Antarctica: Imprints of Gondwana’s Paleozoic accretion. Geology 19, 45–47. Forsberg, R., Tscherning, C.C., 2008. (2008). An. Overview Manual for the GRAVSOFT Geodetic Gravity Field Modelling Programs, 2nd Ed. DTU Space: Kongens Lyngby, Denmark. Forsberg, R., Olesen, A.V., Yildiz, A., Tscherning, C.C., 2011. Polar gravity fields from GOCE and airborne gravity. In: Proc. of ‘4th International GOCE User Workshop, Munich, Germany 31 March – 1 April 2011 (ESA SP-696, July 2011). Forsberg, R., Olesen, A.V., Ferraccioli, F., Jordan, T., Corr, H., Matsuoka, K., 2017. PolarGap 2015/16 - filling the GOCE polar gap in Antarctica and ASIRAS flight around South Pole. Final Report of ESA Contract Nr. 4000115220/15/NL/gp. NERC- British Antarctic Survey. Fretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N.E., Bell, R., Bianchi, C., Bingham, R.G., Blankenship, D.D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A.J., Corr, H.F.J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J.A., Hindmarsh, R.C.A., Holmlund, P., Holt, J.W., Jacobel, R.W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K.A., Leitchenkov, G., Leuschen, C., Luyendyk, B.P., Matsuoka, K., Mouginot, J., Nitsche, F.O., Nogi, Y., Nost, O.A., Popov, S.V., Rignot, E., Rippin, D.M., Rivera, A., Roberts, J., Ross, N., Siegert, M.J., Smith, A.M., Steinhage, D., Studinger, M., Sun, B., Tinto, B.K., Welch, B.C., Wilson, D., Young, D.A., Xiangbin, C., Zirizzotti, A., 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393. Goodge, J.W., Finn, C.A., 2010. Glimpses of East Antarctica: Aeromagnetic and Satellite Magnetic View from the central Transantarctic Mountains of East Antarctica, 115, p. b09103. https://doi.org/10.1029/2009JB006890. Grad, M., Tiira, T., ESC Working Group, 2009. The Moho depth map of the European Plate. Geophys. J. Int. 176, 279–292. https://doi.org/10.1111/j.1365- 246X.2008.03919.x. Graw, J.H., Adams, A.N., Hansen, S.E., Douglas, A.W., Hackworth, L., Park, Y., 2016. Upper mantle shear velocity structure beneath northern Victoria Land, Antarctica: Volcanism and uplift in the northern Transantarctic Mountains. Earth Planet Sc. Lett. 449, 48–60. https://doi.org/10.1016/j.epsl.2016.05.026. Grunow, A.M., Kent, D.W., Dalziehl, J.W.D., 1991. New paleomagnetic data from Thurston Island: Implications for the Tectonics of West Antarctica and Weddel Sea opening. J. Geophys. Res. 96 (B11), 17935–17954. Hamilton, R.J., Luyendick, B.P., Sorlien, C.C., 2001. Cenozoic tectonics of the Cape Roberts Rift Basin and transantarctic Mountains Front Southwesern Ross Sea, Antarctica. Tectonics 20 (3), 325–342. Hansen, S.E., Juli`a, J., Nyblade, A.A., Pyle, M.L., Wiens, D.A., Anandakrishnan, S., 2009. Using S wave receiver functions to estimate crustal structure beneath ice sheets: an application to the Transantarctic Mountains and East Antarctic craton. GGG 10 (8). https://doi.org/10.1029/2009GC002576. Harry, D.L., Anoka, J.L., Jha, S., 2018. Geodynamic models of the West Antarctic Rift System: Implications for the mantle thermal state. Geosphere 14, 6. https://doi.org/ 10.1130/GES01594.1. Heeszel, D.S., Wiens, D.A., Anandakrishnan, S., Aster, R., Dalziel, I.W.D., Huerta, A.D., Nyblade, A.A., Wilson, T.J., Wionberry, J.P., 2016. Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities. J. Geophys. Res. 121, 1758–1775. https://doi.org/10.1002/2015JB012614. Hirt, C., Rexer, M., 2015. Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models - available as gridded data and degree-10,800 spherical harmonics. Int. J. Appl. Earth Obs. Geoinf. 39, 103–112. https://doi.org/10.1016/j.jag.2015.03.001. Jordan, T.A., Ferraccioli, F., Lear, P.T., 2017. New geophysical compilations link crustal block motion to Jurassic extension and strike-slip faulting in the Weddel Sea Rift System of West Antarctica. Gondwana Res. 42, 29–48. https://doi.org/10.1016/j. gr.2016.09.009. Kanao, M., Wiens, D., Tanaka, S., Nyblade, A., Toyokuni, G., Shore, P., Parker, T., 2014. Broadband seismic deployments in East Antarctica: IPY contribution to monitoring the Earth’s interiors. Ann. Geophys. 57 (3) https://doi.org/10.4401/ag-6379. Lamarque, G., Barruol, G., Fontaine, F.R., Bascou, J., Menot, R.P., 2015. Crustal and mantle structure beneath the Terre Adelie Craton, East Antarctica: insights from receiver function and seismic anisotropy measurements. Geophys. J. Int. 200, 807–821. https://doi.org/10.1093/gji/ggu430. Laske, G., Masters, G., Ma, Z., Paysanos, M., 2013. Update on CRUST1.0 – A 1 degree Global Model of Earth’s CRUST. Geophys. Res. Abstr. 15. Abstract EGU2013-2658. Lawrence, J.F., Wiens, D.A., Nyblade, A.A., Anandakrishnan, S., Shore, P., Voigt, D., 2006a. Crust and upper mantle structure of the Transantarctic Mountains and surrounding regions from receiver functions, surface waves, and gravity: Implication for uplift models. GGG 7, (10). https://doi.org/10.1029/2006GC001282. Lawrence, J.F., Wiens, D.A., Nyblade, A.A., Anandakrishnan, S., Shore, P.J., Voigt, D., 2006b. Rayleigh wave phase velocity analysis of the Ross Sea, Transantarctic Mountains, and East Antarctica from a temporary seismograph array. J. Geophys. Res. Solid Earth 111 (B6). https://doi.org/10.1029/2005JB003812. LeMasurier, W.E., 1990. Late Cenozoic volcanism on the Antarctic Plate, an Overview in Volcanoes of the Antarctic Plate and Southern Ocean. In: Lemasurier, W.E., Thomson, J. W. (Eds.), Antarctic Rev. Series, 48. AGU Washington D.C, pp. 1–17. LeMasurier, W.E., Landis, C.A., 1996. Mantle-plume activity recorded by low-relief erosion surfaces in West Antarctica and New Zealand. Geol. Soc. Am. Bull. 108, 1450–1466. https://doi.org/10.1130/0016-7606. LeMasurier, W.E., Rex, D.C., 1989. Evolution of linear volcanic ranges in Marie Byrd Land, West Antarctica. J. Geophys. Res. 94 (B6), 7223–7236. Lloyd, S., van der Lee, S., França, G.S., Assumpç˜ao, M., Feng, M., 2010. Moho map of South America from receiver functions and surface waves. J. Geophys. Res. 115, B11315. https://doi.org/10.1029/2009JB006829. Lloyd, A.J., Wien, D.A., Nyblade, A., Anandakrishnan, S., Aster, R.C., Huerta, A.D., Wilson, T.J., Dalziel, I.W.D., Shore, P.J., Zhao, D., 2015. A seismic transect across West Antarctica: evidence for mantle thermal anomalies beneath the Bentley Subglacial trench and the Mary Byrd Land Dome. J. Geophys. Res. 120, 8439–8460. https://doi.org/10.1002/2015JB12455. Lloyd, A.J., Wiens, D.A., Zhu, H., Tromp, J., Nyblade, A.A., Aster, R.C., Hansen, S.E., Dalziel, I.W.D., Wilson, T.J., Ivins, E.R., O’Donnell, J.P., 2019. Seismic structure of the Antarctic Upper Mantle Image with Adjoint Tomography. JGR: Solid Earth 124. https://doi.org/10.1029/2019JB017823. Llubes, M., Seoane, L., Bruinsma, S., Remy, F., 2018. Crustal thickness of Antarctica estimated using data from gravimetric satellites. Solid Earth 9, 457–467. https://doi. org/10.5194/se-9-457-2018. Lucas, E.M., Soto, D., Nyblade, A.A., Lloyd, A.J., Aster, R.C., Wiens, D.A., O’Donnel, J.P., Stuart, J.P., Wilson, T.J., Dalziel, I.W., Winberry, J.P., Huerta, A.D., 2020. P- and S- wave velocity structure of Central West Antarctica: Implications for the tectonic evolution of the West Antarctic Rift System. EPSL 546, 116437. https://doi.org/ 10.1016/j.epsl.2020.116437. Martos, Y.M., Catalan, M., Jordan, T.A., Golinsky, A., Golinsky, D., Eagles, G., Vaughan, D.G., 2017. Heat flux distribution of Antarctica unveiled. GRL 44, 11,417–11,426. https://doi.org/10.1002/2017GL075609. McNutt, M.K., 1998. Superswells. Rev. Geophys. 36 (2), 211–244. https://doi.org/ 10.1029/98RG00255. Morelli, A., Danesi, S., 2004. Seismological imaging of the Antarctic continental lithosphere: a review. Glob. Planet. Chang. 42, 155–165. Nield, G.A., Whitehouse, P.L., King, M.A., Clarke, P.J., Bentley, M.J., 2012. Increased ice loading in the Antarctic Peninsula since the 1850s and its effect on glacial isostatic adjustments. Geophys. Res. Lett. 39, LI7504 https://doi.org/10.1029/ 2012GL052559. Ohzono, M., Tabei, T., Doi, K., Shibuya, K., Sagiya, T., 2006. Crustal movement of Antarctica and Syowa Station based on GPS measurments. Earth Planet Space 58, 795–804. Panter, K.S., Kyle, P.R., Smellie, J.L., 1997. Petrogenesis of a phonolite-trachyte succession at Mount Sidley, Marie Byrd Land, Antarctica. J. Petrol. 38 (9), 1225–1253. Pappa, F., Ebbing, J., Ferraccioli, F., 2019. Moho dephts of Antarctica: comparison of seismic, gravity, and isostatic results. GGG 20 (3), 1629–1645, 10.1029/ 2018GC008111. Paulsen, T.S., Wilson, T.J., 2010. Evolution of Neogene volcanism and stress patterns in the glaciated West Antarctic Rift, Marie Byrd Land, Antarctica. J. Geol. Soc. 167 (2), 401–416. Poh´anka, V., 1998. Optimum expression for computation of the gravity field of a polyhedral body with linearly increasing density. Geophys. Prospect. 46, 391–404. https://doi.org/10.1046/j.1365-2478.1998.960335.x. Ritzwoller, M.H., Shapiro, N.M., Levshin, A.L., Leahy, G.M., 2001. Crustal and upper mantle structure beneath Antarctica and surrounding oceans. J. Geophys. Res. 106 (12), 30645–30670. Roult, G., Rouland, D., 1994. Antarctica I: deep structure investi- gations inferred from seismology: a review. Phys. Earth Planet. Inter. 84, 15–32. Roult, G., Rouland, D., Montagner, J.-P., 1994. Antarctica II: upper- mantle structure from velocity and anisotropy. Phys. Earth Planet. Inter. 4, 33–57. Scheinert, M., Ferraccioli, F., Schwabe, J., Bell, Studinger, M., Damaske, D., Jokat, W., Aleshkova, N., Jordan, T., Leitchenkov, G., Blankenship, D.D., Damiani, T.M., Young, D., Cochran, J.R., Richter, T.D., 2016. New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica. Geophys. Res. Lett. 43, 1–11. https://doi.org/10.1002/2015gl067439. Shen, W., Wiens, D.A., Stern, T., Anandakrishnan, S., Aster, R.C., Dalziel, I.W., Hansen, S., Heeszel, D.S., Huerta, A., Nyblade, A.A., Wilson, T., Winberry, J.P., 2018. Seismic evidence for lithospheric foundering beneath the southern Transantarctic Mountains, Antarctica. Geology 46 (1), 71–74. https://doi.org/10.1130/G39555.1. Sieminski, A., Debayle, E., Leveque, J.-J., 2003. Seismic evidence for deep low-velocity anomalies in the transition zone beneath West Antarctica, Earth Planet. Sci. Lett. 216, 645–661. https://doi.org/10.1016/S0012-821X(03)00518-1. Simmons, N.A., Forte, A.M., Grand, S.P., 2009. Joint seismic, geodynamic and mineral physical constraints on three-dimensional mantle heterogeneity: Implications for relative importance of thermal versus compositional heterogeneity. Geophys. J. Int. 177, 1284–1304. https://doi.org/10.1111/j.1365-246X.2009.04133.x. Simmons, N.A., Forte, A.M., Boschi, L., Grand, S., 2010. GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. J. Geophys. Res. 115, B12310. https://doi.org/10.1029/2010JB007631. Sirevaag, H., Jacobs, J., Ksienzyk, A.K., Dunkl, I., Marschall, H.R., 2018. Extent, thickness and erosion of the Jurassic continental flood basalts of Dronning Maud land, East Antarctica: a low-T thermochronological approach. Gondwana Res. 61, 222–243. https://doi.org/10.1016/j.gr.2018.04.017. Stål, T., Reading, A.M., Halpin, J.A., Whittaker, J.M., 2019. A multivariate approach for mapping lithospheric domain boundaires in East Antarctica. GRL 46, 10404–10416. https://doi.org/10.1029/2019GL083453. Studiger, M., Karner, G.D., Bell, R.E., Levin, V., Raymond, C.A., Tikku, A.A., 2003. Geophysical models for the tectonic framework of the Lake Vostok region, East Antarctica. Earth Planet. Sc. Lett. 216, 663–677. https://doi.org/10.1016/S0012-821X(03)00548-X Swain, C.J., Kirby, J.F., 2021. Effective elastic thickness map reveals subglacial structure of East Antarctica. GRL 48. https://doi.org/10.1029/2020GL091576 e2020GL091576. ten Brink, U.S., Hackney, R.I., Bannister, S., Stern, T., Makovsky, Y., 1997. Uplift of the Transantarctic Mountains and the bedrock beneath the East Antarctic ice sheet. J. Geophys. Res.-Solid Earth 102 (B12), 27603–27621. Tondi, R., Cavazzoni, C., Morelli, A., 2012. Parallel “large”, dense matrix problems: Application to 3D joint inversione of seismological and gravity data. Comput. Geosci. 48, 143–156. https://doi.org/10.1029/j.cageo.2012.05.026. Tondi, R., de Franco, R., 2006. Accurate assessment of 3D crustal velocity and density parameters: application to Vesuvius data sets. Phys. Earth Planet. Inter. 159, 183–201. https://doi.org/10.1016/j.pepi.2006.07.001. Tondi, R., Gilardoni, M., Reguzzoni, M., 2017. The combined inversion of seismological and GOCE gravity data: new insights into the current state of the Pacific lithosphere and upper mantle. Tectonophysics 705, 101–115. https://doi.org/10.1016/j. tecto.2017.03.013. Uieda, L., Barbosa, V.C.F., 2017. Fast nonlinear gravity inversion in spherical coordinates with application to the South American Moho. Geophys. J. Int. 208, 162–176. https://doi.org/10.1093/gji/ggw390. van der Wal, W., Whitehouse, P.L., Schrama, E.J.O., 2015. Effect of GIA models with 3D Composite Mantle Viscosity on GRACE Mass Balance Estimates for Antarctica, 414, pp. 134–143. https://doi.org/10.1016/j/epsl.2015.01.001. Vuan, A., Robertson Maurice, S.D., Wiens, D.A., Panza, G.F., 2005. Crustal and Upper Mantle S-wave Velocity Structure Beneath the Bransfield Strait (West Antarctica) from Regional Surface Tomography, 397, pp. 241–259. https://doi.org/10.1016/j. tecto.2004.12.011. White-Gaynor, A.L., Nyblade, A.A., Aster, R.C., Wiens, D.A., Bromirski, P.D., Gerstoft, P., Stephen, R.A., Hansen, S.E., Wilson, T., Dalziel, I.W., Huerta, A.D., Winberry, J.P., Anandakrishnan, S., 2019. Heterogeneous upper mantle structure beneath the Ross Sea Embayment and Marie Byrd Land, West Antarctica, revealed by P-wave tomography. Earth Planet Sc. Lett. 513, 40–50, 10.16/j.epsl.2019.02.013. Zingerle, P., Brockmann, J.M., Pail, R., Gruber, T., Willberg, M., 2019. The polar Extended Gravity Field Model TIM_R6, p. 2019. https://doi.org/10.5880/ ICGEM.2019.005.en_US
dc.description.obiettivoSpecifico1T. Struttura della Terraen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn0040-1951en_US
dc.contributor.authorTondi, Rosaria-
dc.contributor.authorBorghi, Alessandra-
dc.contributor.authorMorelli, Andrea-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextembargo_20250110-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0001-9400-3904-
crisitem.author.orcid0000-0001-6088-0386-
crisitem.author.orcid0000-0002-7400-8676-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Journal_pre-proofs.pdfto be shared publicly17.23 MBAdobe PDFEmbargoed until January 10, 2025
revised_proofs_TECTO229724.pdfRestricted Paper13.25 MBAdobe PDF
Show simple item record

Page view(s)

86
checked on Mar 27, 2024

Download(s)

3
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric