Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/16019
DC FieldValueLanguage
dc.date.accessioned2023-01-27T11:29:07Z-
dc.date.available2023-01-27T11:29:07Z-
dc.date.issued2022-10-06-
dc.identifier.urihttp://hdl.handle.net/2122/16019-
dc.description.abstractThe role of water in the nucleation process of an earthquake and its contribution to the mainshock is ascertained by many models in its physical part, as a factor capable of altering the balance of pressures and thus influencing the effective pressure. Assuming that water is present at depth, starting from the observation of its molecular structure at various crustal pressure and temperature conditions, the present paper analyses water’s chemical role in relation with the rock matrix, and its response during microfracturing. The creation of a network of new void spaces produces a decrease of the water pressure. Water may respond at molecular scale differently, depending on its aggregation state. Effectively depressurisation has a limited influence on the liquid water, only if it does not cause the transition to the vapour phase. Conversely, depressurisation causes an instantaneous variation in the intermolecular structure of supercritical water (SCW). Specifically, the nearly total disappearance of its ionic characteristics: that means the severe drop of solubility constants. At the same time, the already low viscosity decreases too: SCW intrudes easily into new fissures. When the microcracks tend to close, SCW reacquires adequate ionic characteristics for the rise in density (isothermal pressurisation); hence, an intense water rock interaction starts with freshly opened surfaces. This process influences actively the subcritical crack growth too, again with differences between liquid and SCW: last one participates only when reacquires density. Summarising, it is likely that water plays a fundamental and active role in determining the rock weakening, once earthquake preparation process begin with the development of microcracks are forming, perhaps playing an active role in determining the main rupture. With different modalities according to its aggregation state.en_US
dc.language.isoEnglishen_US
dc.publisher.nameSpringeren_US
dc.relation.ispartofJournal of Seismologyen_US
dc.relation.ispartofseries/26 (2022)en_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectEarthquake chemistryen_US
dc.subjectWater molecular structureen_US
dc.subjectPreseismic scenarioen_US
dc.subjectRock weakeningen_US
dc.subjectL’Aquila earthquake exampleen_US
dc.titleChemistry in earthquake: the active chemical role of liquid and supercritical waters in microfracturing at depthen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber1205–1221en_US
dc.identifier.URLhttps://link.springer.com/article/10.1007/s10950-022-10110-yen_US
dc.identifier.doi10.1007/s10950-022-10110-yen_US
dc.relation.references1. Anderson O.L. and Grew P.C. (1977) Stress corrosion theory of crack propagation with applications to geophysics. Reviews of Geophysics and Space Physics, Volume15, Issue1, 77-104 2. Bahadori A., Vuthaluru Hari B., and Mokhatab S. (2009) New correlations predict aqueous solubility and density of carbon dioxide. International Journal of Greenhouse Gas Control, Volume 3, Issue 4, July 2009, Pages 474-480, https://doi.org/10.1016/j.ijggc.2009.01.003 3. Balbuena P.B., Keith P. Johnston, and Peter J. Rossky (1996) Molecular Dynamics Simulation of Electrolyte Solutions in Ambient and Supercritical Water. 1. Ion Solvation J. Phys. Chem., 1996, 100 (7), pp 2706–2715 DOI: 10.1021/jp952194o. 4. Brace W.F., B. W. Paulding Jr and C. H. Scholz (1966) Dilatancy in the Fracture of Crystalline Rocks. Journal of Geophysical Research Atmospheres 71(16), DOI: 10.1029/JZ071i016p03939 5. Bruni F., Ricci M.A. and A. K. Soper A.K., (1996) Unpredicted density dependence of hydrogen bonding in water found by neutron diffraction Phys. Rev. B 54, 11876 https://doi.org/10.1103/PhysRevB.54.11876 6. Caciagli N. C. and C. E. Manning (2003) The solubility of calcite in water at 6–16 kbar and 500–800 °C. Contributions to Mineralogy and Petrology, December 2003, Volume 146, Issue 3, pp 275–285. 7. Charlton, S.R., and Parkhurst, D.L, 2011, Modules based on the geochemical model PHREEQC for use in scripting and programming languages. Computers & Geosciences, v. 37, p. 1653-1663. 8. Chialvo A. and J. M. Simonson (2003) Aqueous Na+Cl− pair association from liquid like to steam like densities along near-critical isotherms. The Journal of Chemical Physics 118(17):7921-7929. DOI10.1063/1.1564052. 9. Chialvo A., P. T. Cummings, H. D. Cochran J. M. Simonson and R. E. Mesmer (1995). Na+–Cl− ion pair association in supercritical water. The Journal of Chemical Physics 103, 9379; https://doi.org/10.1063/1.470707. 10. Chiarabba C., L. Jovane L. and DiStefano R. (2005). A new view of Italian seismicity using 20 years of instrumental recordings. Tectonophysics, Volume 395, Issues 3–4, Pages 251-268, ISSN 0040-1951, https://doi.org/10.1016/j.tecto.2004.09.013. 11. Chiodini G., Cardellini C., Di Luccio F., Selva J., Frondini F., Caliro S., Rosiello A., Beddini G. and Ventura G. (2020) Correlation between tectonic CO2 Earth degassing and seismicity is revealed by a 10-year record in the Apennines, Italy. Science Advances, Vol 6, Issue 35, DOI: 10.1126/sciadv.abc2938 12. Cochran H.D., P.T.Cummings and S.Karaborni (1992) Solvation in supercritical water. Fluid Phase Equilibria Volume 71, Issues 1–2, January 1992, Pages 1-16 https://doi.org/10.1016/0378-3812(92)85001-O. 13. Cook, N.G.W (1970) An experiment proving that dilatancy is a pervasive volumetric property of brittle rock loaded to failure. Rock Mechanics (1970) 2: 181. https://doi.org/10.1007/BF01245573 14. Criscenti LJ and Cygan RT. (2012) Molecular simulations of carbon dioxide and water: cation solvation. Environ Sci Technol. 2013 Jan 2;47(1):87-94. doi: 10.1021/es301608c. Epub 2012 Jul 20. PMID: 22779448. 15. Di Luccio, F., Ventura, G., Di Giovambattista, R., Piscini, A., and Cinti, F. R. (2010), Normal faults and thrusts reactivated by deep fluids: The 6 April 2009 Mw 6.3 L'Aquila earthquake, central Italy, J. Geophys. Res., 115, B06315, doi:10.1029/2009JB007190. 16. Doglioni C., S. Barba S., E. Carminati E., and Riguzzi F. (2014) Fault on–off versus coseismic fluids reaction, Geoscience Frontiers, Volume 5, Issue 6, Pages 767-780, ISSN 1674-9871, https://doi.org/10.1016/j.gsf.2013.08.004. 17. Duan J., Y. Shim and H. J. Kim (2006) Solvation in supercritical water. The Journal of Chemical Physics 124, 204504 (2006); https://doi.org/10.1063/1.2194012. 18. Dunning J.D., Petrovski D., Schuyler J. and Owens A., (1984) The effects of aqueous chemical environments on crack propagation in quartz. JGR Solid Earth, Vol. 89, N B6, 4115-4123, https://doi.org/10.1029/JB089iB06p04115 19. Eberhardt, E., Stimpson, B. and Stead, D. (1999) Effects of Grain Size on the Initiation and Propagation Thresholds of Stress-induced Brittle Fractures. Rock Mech Rock Engng 32, 81–99. https://doi.org/10.1007/s006030050026 20. Fein J. B and J. V Walther (1987) Calcite solubility in supercritical CO2-H2O fluids. Geochimica et Cosmochimica Acta, Volume 51, Issue 6, June 1987, Pages 1665-1673, https://doi.org/10.1016/0016-7037(87)90346-2 21. Feng Z., Y. Zhao, Y. Zhang and Z. Wan. (2018). Real-time permeability evolution of thermally cracked granite at triaxial stresses. Applied Thermal Engineering, Volume 133, 25 March 2018, Pages 194-200, https://doi.org/10.1016/j.applthermaleng.2018.01.037 22. Fernández-Serra M.V. and E Artacho (2004) Network equilibration and first-principles liquid water. The Journal of Chemical Physics 121 (22), 11136-11144. 23. Fournier R. O. and R. W. Potter (1982) An equation correlating the solubility of quartz in water from 25° to 900°C at pressures up to 10,000 bars. Geochimica et Cosmochimica Acta Volume 46, Issue 10, October 1982, Pages 1969-1973 https://doi.org/10.1016/0016-7037(82)90135-1 24. Fournier R.O. (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics, Volume 5, Issues 1–4, 1977, Pages 41-50. https://doi.org/10.1016/0375-6505(77)90007-4 25. Futera Z, Yong X, Pan Y, Tse J.S and English N.J. (2017) Formation and properties of water from quartz and hydrogen at high pressure and temperature. Earth and Planetary Science Letters, Volume 461, 1 March 2017, Pages 54-60, https://doi.org/10.1016/j.epsl.2016.12.031. 26. Galli G and Ding Pan D., (2013) A Closer look at supercritical water. Proceedings of the National Academy of Sciences Apr 2013, 110 (16) 6250-6251; DOI: 10.1073/pnas.1303740110 27. Gorbaty Y., V. Galina and V. Bondarenko (2017). Transition of liquid water to the supercritical state. Journal of Molecular Liquids. Volume 239, August 2017, Pages 5-9. https://doi.org/10.1016/j.molliq.2016.06.040 28. Hangx S.J.T. (2005) Behaviour of the CO2-H2O system and preliminary mineralisation model and experiments. Deliverable WP 4.1-3-05 from CATO Workpackage WP 4.1, Shell contract 4600002284. 29. Heinicke J., Fischer T., Gaupp R., J. Götze J., Koch U., H. Konietzky H. and Stanek K.-P., (2009) Hydrothermal alteration as a trigger mechanism for earthquake swarms: the Vogtland/NW Bohemia region as a case study, Geophysical Journal International, Volume 178, Issue 1, Pages 1–13, https://doi.org/10.1111/j.1365-246X.2009.04138.x 30. Homand F., D. Hoxha, T. Belem, M.N Pons and N. Hoteit (2000) Geometric analysis of damaged microcracking granites. Mechanics of Materials 32(6), DOI: 10.1016/S0167-6636(00)00005-3 31. Isaacs E.D., A. Shukla, P.M. Platzman, D.R. Hamann, B. Barbiellini and C.A. Tulk, (2000). Compton scattering evidence for covalency of the hydrogen bond in ice. Journal of Physics and Chemistry of Solids, 61, 403­406. 32. Jedlovszky P., Brodholt J.P., Bruni F., Ricci M.A., Soper A.K. and Vallauri R., (1998) Analysis of the hydrogen-bonded structure of water from ambient to supercritical conditions J. Chem. Phys. 108, 8528 (1998); https://doi.org/10.1063/1.476282 33. Jouniaux L., Masuda K., Lei X., Nishizawa O., Kusunose K., Liu L. and Ma W. (2001) Comparison of the microfracture localization in granite between fracturation and slip of a preexisting macroscopic healed joint by acoustic emission measurements. Journal of Geophysical Research, American Geophysical Union, 106, B5 (B5), pp.8687-8698. 10.1029/2000JB900411. 34. Kalinichev A.G. and J.D. Bass (1997) Hydrogen bonding in supercritical water. 2. Computer simulations. The Journal of Physical Chemistry A, 1997, 101 (50), pp 9720–9727, DOI: 10.1021/jp971218j. 35. Kandula N., Cordonnier B., Boller E., Weiss J., Dysthe D.K., and Renard F. (2019). Dynamics of microscale precursors during brittle compressive failure in Carrara marble. Journal of Geophysical Research: Solid Earth, American Geophysical Union, 10.1029/2019JB017381. hal-02347752 36. Keshri S., R. Mandal and B.L.Tembe (2016) Solvation structures and dynamics of alkaline earth metal halides in supercritical water: A molecular dynamics study. Chemical Physics, Volume 476, Pages 80-90, https://doi.org/10.1016/j.chemphys.2016.08.003 37. Kozlovsky Y.A. (1987) Gases and Organic Matter. In: Kozlovsky Y.A. (eds) The Superdeep Well of the Kola Peninsula. Exploration of the Deep Continental Crust. Springer, Berlin, Heidelberg. 38. Kritzer P. (2004) Corrosion in high-temperature and supercritical water and aqueous solutions: a review. The Journal of Supercritical Fluids, Volume 29, Issues 1–2, April 2004, Pages 1-29, https://doi.org/10.1016/S0896-8446(03)00031-7 39. Lee S. H. and P. T. Cummings (2000) Molecular dynamics simulation of limiting conductances for LiCl, NaBr, and CsBr in supercritical water. The Journal of Chemical Physics 112, 864 (2000); https://doi.org/10.1063/1.480613 40. Lockner D., Byerlee J., Kuksenko V. Ponomarev A. and Sidorin A. (1991). Quasi-static fault growth and shear fracture energy in granite. Nature 350, 39–42. https://doi.org/10.1038/350039a0 41. Lucente F.P., De Gori P., Margheriti L., Piccinini D., Di Bona M., Chiarabba C. and Agostinetti N.P. (2010) Temporal variation of seismic velocity and anisotropy before the 2009 MW 6.3 L'Aquila earthquake, Italy. Geology; 38 (11): 1015–1018. doi: https://doi.org/10.1130/G31463.1 42. Macdonald R.W. and N. A. North (1974) The Effect of Pressure on the Solubility of CaCO3, CaF2, and SrSO4 in Water. Canadian Journal of Chemistry, 1974, 52(18): 3181-3186, https://doi.org/10.1139/v74-467 43. Main Ian G., A. F. Bell, P. G. Meredith, S. Geiger and S. Touati (2012), The dilatancy–diffusion hypothesis and earthquake predictability. Geological Society. London, Special Publications, 367, 215-230, 9 August 2012, https://doi.org/10.1144/SP367.15 44. Mahadevan TS and Garofalini SH. (2007). Dissociative water potential for molecular dynamics simulations. J Phys Chem B.;111(30):8919-27. doi: 10.1021/jp072530o. Epub 2007 Jun 30. PMID: 17604393. 45. Malmberg C.G. and A.A: Maryott (1956) Dielectric constant of water from 0° to 100°. Journal of Research of the National Bureau of Standards, 56 n.1, 1-8. 46. Mantegazzi D., C. Sanchez-Valle and T. Driesner (2013) Thermodynamic properties of aqueous NaCl solutions to 1073 K and 4.5 GPa, and implications for dehydration reactions in subducting slabs. Geochimica et Cosmochimica Acta, Volume 121, 15 November 2013, Pages 263-290, DOI10.1016/j.gca.2013.07.015 47. Michalske T. A. and S. W. Freiman (1982) A molecular interpretation of stress corrosion in silica. Nature volume 295, pages 511–512 (11 February 1982), doi:10.1038/295511a0 48. Miller S.A. (2013) Chapter 1 - The Role of Fluids in Tectonic and Earthquake Processes Advances in Geophysics Volume 54, 2013, Pages 1-46, https://doi.org/10.1016/B978-0-12-380940-7.00001-9 49. Millero F. J (1982) The effect of pressure on the solubility of minerals in water and seawater. Geochimica et Cosmochimica Acta, Volume 46, Issue 1, January 1982, Pages 11-22, https://doi.org/10.1016/0016-7037(82)90286-1 50. Nakahara M., N. Matubayasi, C. Wakai, Y Tsujino (2001) Structure and dynamics of water: from ambient to supercritical. Journal of Molecular Liquids, Volume 90, Issues 1–3, February 2001, Pages 75-83, https://doi.org/10.1016/S0167-7322(01)00109-X 51. Nara Y., Yamanaka H., Oe Y. and Kaneko K. (2013). Influence of temperature and water on subcritical crack growth parameters and long-term strength for igneous rocks, Geophysical Journal International, Volume 193, Issue 1, Pages 47–60, https://doi.org/10.1093/gji/ggs116 52. Nishiyama T., Chen Y., Kusuda H., Ito T., Kaneko K., Kita H and Sato T., (2002) The examination of fracturing process subjected to triaxial compression test in Inada granite. Engineering Geology, Volume 66, Issues 3–4, 2002, Pages 257-269, ISSN 0013-7952, https://doi.org/10.1016/S0013-7952(02)00046-7. 53. Oda M., T. Takemura and T. Aoki (2002) Damage growth and permeability change in triaxial compression tests of Inada granite. Mechanics of Materials, Volume 34, Issue 6, June 2002, Pages 313-331, https://doi.org/10.1016/S0167-6636(02)00115-1 54. Oelkers E. H and H. C. Helgeson (1993). Calculation of dissociation constants and the relative stabilities of polynuclear clusters of 1:1 electrolytes in hydrothermal solutions at supercritical pressures and temperatures. Geochimica et Cosmochimica Acta Volume 57, Issue 12, June 1993, Pages 2673-2697, https://doi.org/10.1016/0016-7037(93)90383-8 55. Pan D. and G. Galli (2016) The fate of carbon dioxide in water-rich fluids under extreme conditions. Science Advances 12 Oct 2016: Vol. 2, no. 10, e1601278 DOI: 10.1126/sciadv.1601278 56. Parkhurst D.L. and C.A.J. Appelo. (2013) Description of input and examples for PHREEQC version 3--A computer program for speciation, batch- reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at http://pubs.usgs.gov/tm/06/a43. 57. Parks, G. A. (1984), Surface and interfacial free energies of quartz, J. Geophys. Res., 89 (B6), 3997– 4008, doi:10.1029/JB089iB06p03997. 58. Petrenko V.E., D.L. Gurina and M.L. Antipova. (2012) Structure of supercritical water: The concept of critical isotherm as a percolation threshold. Russian Journal of Physical Chemistry B, 6, 8, 899 906. https://doi.org/10.1134/S1990793112080155 59. Popp T., H. Kern and O. Schulze (2001) Evolution of dilatancy and permeability in rock salt during hydrostatic compaction and triaxial deformation. Journal of Geophysical Research: Solid Earth, Volume 106, Issue B3, Pages 4061-4078, https://doi.org/10.1029/2000JB900381 60. Portier S and Rochelle C (2005) Modelling CO2 solubility in pure water and Na-Cl type waters from 0 to 300° and from 1 to 300 bar. Application to the Utsira Formation at Sleipner. Chemical Geology, 217, 187-199, https://doi.org/10.1016/j.chemgeo.2004.12.007 61. Proctor B., Lockner D.A., Kilgore B.D., T. M. Mitchell T.M. and N. M. Beeler N.M., (2020). Direct Evidence for Fluid Pressure, Dilatancy, and Compaction Affecting Slip in Isolated Faults. Geophysical Research Letters, 47, 16, https://doi.org/10.1029/2019GL086767 62. Pruess K. (2005) Numerical studies of fluid leakage from a geologic disposal reservoir for CO2 show self-limiting feedback between fluid flow and heat transfer. Geoph Res Lett., VOL. 32, L14404, doi:10.1029/2005GL023250 63. Rimsza, J. M., Jones, R. E. and Criscenti, L. J. (2018). Chemical effects on subcritical fracture in silica from molecular dynamics simulations. Journal of Geophysical Research: Solid Earth, 123, 9341– 9354. https://doi.org/10.1029/2018JB016120 64. Rochelle, C.A. and Moore, Y.A. (2002). The solubility of supercritical CO2 into pure water and synthetic Utsira porewater. British Geological Survey Commissioned Report, CR/02/052. 23 pp 65. Sakuma H. and M. Ichiki (2016) Density and isothermal compressibility of supercritical H2O–NaCl fluid: molecular dynamics study from 673 to 2000 K, 0.2 to 2 GPa, and 0 to 22 wt% NaCl concentrations. Geofluids, Volume 16, Issue 1, February 2016, Pages 89-102, https://doi.org/10.1111/gfl.12138 66. Sakuma H. and M. Ichiki (2016) Density and isothermal compressibility of supercritical H2O–NaCl fluid: molecular dynamics study from 673 to 2000 K, 0.2 to 2 GPa, and 0 to 22 wt% NaCl concentrations. Geofluids, Volume16, Issue 1, February 2016, Pages 89-102, https://doi.org/10.1111/gfl.12138 67. Sakuma H., M. Ichiki, K. Kawamura and K. Fuji-ta (2013). Prediction of physical properties of water under extremely supercritical conditions: A molecular dynamics study. The Journal of Chemical Physics 138, 134506 (2013); https://doi.org/10.1063/1.4798222 68. Savage M.K. (2010). The role of fluids in earthquake generation in the 2009 Mw 6.3 L'Aquila, Italy, earthquake and its foreshocks. Geology; 38 (11): 1055–1056. https://doi.org/10.1130/focus112010.1 69. Sibson, R.H., (1992). Implications of fault-valve behaviour for rupture nucleation and recurrence. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophyslcs, 211: 283–293. 70. Smithson S.B., F. Wenzel, Y.V. Ganchin, I.B. Morozova (2000) Seismic results at Kola and KTB deep scientific boreholes: velocities, reflections, fluids, and crustal composition. Tectonophysics, Volume 329, Issues 1–4, 31 December 2000, Pages 301-317, https://doi.org/10.1016/S0040-1951(00)00200-6 71. Spycher, N. and Pruess, K. (2010) A Phase-Partitioning Model for CO2–Brine Mixtures at Elevated Temperatures and Pressures: Application to CO2-Enhanced Geothermal Systems. Transp Porous Med 82, 173–196. https://doi.org/10.1007/s11242-009-9425-y 72. Stumm W. and J. J. Morgan (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd Edition, Wiley and sons, ISBN: 978-0-471-51185-4, 1040 pp. 73. Sugan, M., Kato, A., Miyake, H., Nakagawa, S., and Vuan, A. (2014), The preparatory phase of the 2009 Mw 6.3 L'Aquila earthquake by improving the detection capability of low-magnitude foreshocks, Geophys. Res. Lett., 41, 6137– 6144, doi:10.1002/2014GL061199. 74. Sugisaki R., M. Ido, H. Takeda, Y. Isobe, Y. Hayashi, N. Nakamura, H. Satake and Y. Mizutani, (1983) Origin of Hydrogen and Carbon Dioxide in Fault Gases and Its Relation to Fault Activity. The Journal of Geology 91, no. 3 (May, 1983): 239-258, https://doi.org/10.1086/628769 75. Suresh, S. J. and V. M Naik (2000). Hydrogen bond thermodynamic properties of water from dielectric constant data. Journal of Chemical Physics, 113, 9727-9732. 76. Sverjensky D. A., B. Harrison and D. Azzolini. (2014) Water in the deep Earth: The dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 °C. Geochimica et Cosmochimica Acta, Volume 129, 15 March 2014, Pages 125-145. https://doi.org/10.1016/j.gca.2013.12.019. 77. Takahashi T. and Hashida T. (2004) Microcrack Formation and Fracture Characteristics in Granite Under Supercritical Water Conditions Elsevier Geo-Engineering Book Series Volume 2, 2004, Pages 685-690, https://doi.org/10.1016/S1571-9960(04)80119-8 78. Ved’ O.V., D.L. Gurina, M.L. Antipova and V. E. Petrenko (2010) Hydrogen Bond and Dipole Moment in Sub- and Supercritical Water Close to the Saturation Curve Russian Journal of Physicalof Physical Chemistry A, 84, 8 1359- 1363. https://doi.org/10.1134/S0036024410080157 79. Violay M., M. J. Heap, M. Acosta and C. Madonna (2017). Porosity evolution at the brittle-ductile transition in the continental crust: Implications for deep hydro-geothermal circulation. Scientific Reports volume 7, Article number: 7705 (2017), DOI:10.1038/s41598-017-08108-5 80. Voisin T., A. Erriguible, D. Ballenghien, D. Mateos, A. Kunegel, F. Cansella and C. Aymoniera. (2017) Solubility of inorganic salts in sub- and supercritical hydrothermal environment: Application to SCWO processes. The Journal of Supercritical Fluids, Volume 120, Part 1, February 2017, Pages 18-31 https://doi.org/10.1016/j.supflu.2016.09.020. 81. Walther J. V. (1986) Mineral solubilities in supercritical H2O solutions. Pure and Applied Chemistry, Volume 58, Issue 12, Pages 1585–1598, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/pac198658121585. 82. Yamashita T. and Tsutsumi A. (2018) Involvement of Fluids in Earthquake Ruptures, Field/Experimental Data and Modeling. Springer, 187 pp, https://doi.org/10.1007/978-4-431-56562-8 83. Yoshida, K., & Hasegawa, A. (2018). Hypocenter migration and seismicity pattern change in the Yamagata-Fukushima border, NE Japan, caused by fluid movement and pore pressure variation. Journal of Geophysical Research: Solid Earth, 123, 5000– 5017. https://doi.org/10.1029/2018JB015468 84. Yoshii N., S. Miura, S. and Okazaki (2001). A molecular dynamics study of dielectric constant of water from ambient to sub- and supercritical conditions using a fluctuating-charge potential model. Chemical Physics Letters. Volume 345, Issues 1–2, 7 September 2001, Pages 195-200 https://doi.org/10.1016/S0009-2614(01)00863-6 85. Zhao D., Zhang S. and Wang M. (2019), Microcrack Growth Properties of Granite under Ultrasonic High-Frequency Excitation. Advances in Civil Engineering, vol. 2019, Article ID 3069029, 11 pages, 2019. https://doi.org/10.1155/2019/3069029 86. Zhu, W., Allison, K.L., Dunham, E.M. et al. (2020) Fault valving and pore pressure evolution in simulations of earthquake sequences and aseismic slip. Nat Commun 11, 4833. https://doi.org/10.1038/s41467-020-18598-zen_US
dc.description.obiettivoSpecifico9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismicheen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn1383-4649en_US
dc.relation.eissn1573-157Xen_US
dc.contributor.authorCalcara, Massimo-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-5195-1883-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Chemistry in earthquake.pdfOpen Access published article1.83 MBAdobe PDFView/Open
Show simple item record

Page view(s)

12
checked on Apr 24, 2024

Download(s)

21
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric