Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/15994
DC FieldValueLanguage
dc.date.accessioned2023-01-27T06:59:57Z-
dc.date.available2023-01-27T06:59:57Z-
dc.date.issued2022-01-
dc.identifier.urihttp://hdl.handle.net/2122/15994-
dc.description.abstractNon-stationary signals are often analyzed using raw waveform data or spectrograms of those data; however, the possibility of alternative time–frequency representations being more informative than the original data or spectrograms is yet to be investigated. This paper tested whether alternative time–frequency representations could be more informative for machine learning classification of seismological data. The mentioned hypothesis was evaluated by training three well-established convolutional neural networks using nine time–frequency representations. The results were compared to the base model, which was trained on the raw waveform data. The signals that were used in the experiment are three-component seismogram instances from the Local Earthquakes and Noise DataBase (LEN-DB). The results demonstrate that Pseudo Wigner–Ville and Wigner–Ville time–frequency representations yield significantly better results than the base model, while spectrogram and Margenau–Hill perform significantly worse (p < 0.01). Interestingly, the spectrogram, which is often used in signal analysis, had inferior performance when compared to the base model. The findings presented in this research could have notable impacts in the fields of geophysics and seismology as the phenomena that were previously hidden in the seismic noise are now more easily identified. Furthermore, the results indicate that applying Pseudo Wigner–Ville or Wigner–Ville time–frequency representations could result in a large increase in earthquakes in the catalogs and lessen the need to add new stations with an overall reduction in the costs. Finally, the proposed approach of extracting valuable information through time–frequency representations could be applied in other domains as well, such as electroencephalogram and electrocardiogram signal analysis, speech recognition, gravitational waves investigation, and so on.en_US
dc.description.sponsorshipCOST project G2Net CA17137 A network for Gravitational Waves, Geophysics and Machine Learning.en_US
dc.language.isoEnglishen_US
dc.publisher.nameMDPIen_US
dc.relation.ispartofMathematicsen_US
dc.relation.ispartofseries/10 (2022)en_US
dc.subjectearthquake detection; convolutional neural network; non-stationary signal analysis; classification; time–frequency representationen_US
dc.titleThe Choice of Time–Frequency Representations of Non-Stationary Signals Affects Machine Learning Model Accuracy: A Case Study on Earthquake Detection from LEN-DB Dataen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber965en_US
dc.subject.INGV04.06. Seismologyen_US
dc.identifier.doi10.3390/math10060965en_US
dc.relation.referencesWithers, M.; Aster, R.; Young, C.; Beiriger, J.; Harris, M.; Moore, S.; Trujillo, J. A comparison of select trigger algorithms for automated global seismic phase and event detection. Bull. Seismol. Soc. Am. 1998, 88, 95–106. [CrossRef] 2. Yoon, C.E.; O’Reilly, O.; Bergen, K.J.; Beroza, G.C. Earthquake detection through computationally efficient similarity search. Sci. Adv. 2015, 1, e1501057. [CrossRef] [PubMed] 3. Rojas, O.; Otero, B.; Alvarado, L.; Mus, S.; Tous, R. Artificial neural networks as emerging tools for earthquake detection. Comput. Sist. 2019, 23, 350. [CrossRef] 4. Perol, T.; Gharbi, M.; Denolle, M. Convolutional neural network for earthquake detection and location. Sci. Adv. 2018, 4, e1700578. [CrossRef] [PubMed] 5. Lomax, A.; Michelini, A.; Jozinovi ́ c, D. An Investigation of Rapid Earthquake Characterization Using Single-Station Waveforms and a Convolutional Neural Network. Seismol. Res. Lett. 2019, 90, 517–529. [CrossRef] 6. Zhou, Y.; Yue, H.; Kong, Q.; Zhou, S. Hybrid Event Detection and Phase-Picking Algorithm Using Convolutional and Recurrent Neural Networks. Seismol. Res. Lett. 2019, 90, 1079–1087. [CrossRef] 7. Tous, R.; Alvarado, L.; Otero, B.; Cruz, L.; Rojas, O. Deep Neural Networks for Earthquake Detection and Source Region Estimation in North-Central Venezuela. Bull. Seismol. Soc. Am. 2020, 110, 2519–2529. [CrossRef] 8. Mousavi, S.M.; Zhu, W.; Sheng, Y.; Beroza, G.C. CRED: A Deep Residual Network of Convolutional and Recurrent Units for Earthquake Signal Detection. Sci. Rep. 2019, 9, 10267. [CrossRef] 9. Dokht, R.M.; Kao, H.; Visser, R.; Smith, B. Seismic event and phase detection using time-frequency representation and convolutional neural networks. Seismol. Res. Lett. 2019, 90, 481–490. [CrossRef] 10. Mousavi, S.M.; Langston, C.A. Fast and novel microseismic detection using time-frequency analysis. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Tulsa, OK, USA, 2016; Volume 35. [CrossRef] Magrini, F.; Jozinovi ́ c, D.; Cammarano, F.; Michelini, A.; Boschi, L. Local earthquakes detection: A benchmark dataset of 3-component seismograms built on a global scale. Artif. Intell. Geosci. 2020, 1, 1–10. [CrossRef] 12. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef] 13. Ackroyd, M.H. Short-time spectra and time-frequency energy distributions. J. Acoust. Soc. Am. 1971, 50, 1229–1231. [CrossRef] 14. Flandrin, P. Time-Frequency/Time-Scale Analysis; Academic Press: Cambridge, MA, USA, 1998. 15. Hlawatsch, F.; Auger, F. Time-Frequency Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2013. 16. Margenau, H.; Hill, R.N. Correlation between Measurements in Quantum Theory. Prog. Theor. Phys. 1961, 26, 722–738. [CrossRef] 17. Volpato, A.; Collini, E. Time-frequency methods for coherent spectroscopy. Opt. Express 2015, 23, 20040. [CrossRef] 18. Ville, J. Theorie et application dela notion de signal analytique. Câbles Transm. 1948, 2, 61–74. 19. Boashash, B. Time-Frequency Signal Analysis and Processing: A Comprehensive Reference; Academic Press: Cambridge, MA, USA, 2015. 20. Claasen, T.; Mecklenbräuker, W. The Wigner distribution—A tool for time-frequency signal analysis, Parts I–III. Philips J. Res. 1980, 35, 217–250, 276–300, 372–389. 21. Flandrin, P.; Escudié, B. An interpretation of the pseudo-Wigner-Ville distribution. Signal Process. 1984, 6, 27–36. [CrossRef] 22. Flandrin, P. Some features of time-frequency representations of multicomponent signals. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’84), Institute of Electrical and Electronics Engineers, San Diego, CA, USA, 19–21 March 1984; Volume 9, pp. 266–269. [CrossRef] 23. Cordero, E.; de Gosson, M.; Dörfler, M.; Nicola, F. Generalized Born-Jordan distributions and applications. Adv. Comput. Math. 2020, 46, 51. [CrossRef] 24. Jeong, J.; Williams, W.J. Kernel design for reduced interference distributions. IEEE Trans. Signal Process. 1992, 40, 402–412. [CrossRef] 25. Choi, H.I.; Williams, W.J. Improved Time-Frequency Representation of Multicomponent Signals Using Exponential Kernels. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 862–871. [CrossRef] 26. Hlawatsch, F.; Manickam, T.G.; Urbanke, R.L.; Jones, W. Smoothed pseudo-Wigner distribution, Choi-Williams distribution, and cone-kernel representation: Ambiguity-domain analysis and experimental comparison. Signal Process. 1995, 43, 149–168. [CrossRef] 27. Papandreou, A.; Boudreaux-Bartels, G.F. Distributions for time-frequency analysis: A generalization of Choi-Williams and the Butterworth distribution. In Proceedings of the 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-92), San Francisco, CA, USA, 23–26 March 1992; Volume 5, pp. 181–184. [CrossRef] 28. Wu, D.; Morris, J.M. Time-frequency representations using a radial Butterworth kernel. In Proceedings of the IEEE-SP International Symposium on Time- Frequency and Time-Scale Analysis, Philadelphia, PA, USA, 25–28 October 1994; pp. 60–63. [CrossRef] 29. Papandreou, A.; Boudreaux-Bertels, G. Generalization of the Choi-Williams Distribution and the Butterworth Distribution for Time-Frequency Analysis. IEEE Trans. Signal Process. 1993, 41, 463. [CrossRef] 30. Auger, F. Représentations Temps-Fréquence des Signaux Non-Stationnaires: Synthèse et Contribution. Ph.D. Thesis, Ecole Centrale de Nantes, Nantes, France, 1991. 31. Guo, Z.; Durand, L.G.; Lee, H. The time-frequency distributions of nonstationary signals based on a Bessel kernel. IEEE Trans. Signal Process. 1994, 42, 1700–1707. [CrossRef] 32. Auger, F.; Flandrin, P.; Goncalves, P.; Lemoine, O. Time-Frequency Toolbox Reference Guide. Hewston Rice Univ. 2005, 180, 1–179. 33. Man’ko, V.I.; Mendes, R.V. Non-commutative time-frequency tomography. Phys. Lett. Sect. A Gen. At. Solid State Phys. 1999, 263. [CrossRef] 34. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [CrossRef] 35. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556v6. 36. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [CrossRef] 37. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. 38. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. 39. Jozinovi ́ c, D.; Lomax, A.; Štajduhar, I.; Michelini, A. Rapid prediction of earthquake ground shaking intensity using raw waveform data and a convolutional neural network. Geophys. J. Int. 2020, 222, 1379–1389. [CrossRef] 40. Baldi, P.; Vershynin, R. The capacity of feedforward neural networks. Neural Netw. 2019, 116, 288–311. [CrossRef] 41. Nawi, N.M.; Atomi, W.H.; Rehman, M. The Effect of Data Pre-processing on Optimized Training of Artificial Neural Networks. Procedia Technol. 2013, 11, 32–39. [CrossRef] 42. Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2020, 97, 105524. [CrossRef] 43. Dietterich, T.G. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Comput. 1998, 10, 1895–1923. [CrossRef] Bonferroni, C.E. Teoria statistica delle classi e calcolo delle probabilità. Pubbl. R Ist. Sup. Sci. Econ. Commer. Fir. 1936, 8, 3–62. 45. Mousavi, S.M.; Sheng, Y.; Zhu, W.; Beroza, G.C. STanford EArthquake Dataset (STEAD): A Global Data Set of Seismic Signals for AI. IEEE Access 2019, 7, 179464–179476. [CrossRef] 46. Amato, F.; Guignard, F.; Robert, S.; Kanevski, M. A novel framework for spatio-temporal prediction of environmental data using deep learning. Sci. Rep. 2020, 10, 22243. [CrossRef] 47. Wang, S.; Cao, J.; Yu, P. Deep Learning for Spatio-Temporal Data Mining: A Survey. IEEE Trans. Knowl. Data Eng. 2020, 1. [CrossRef] 48. Wang, L.; Xu, T.; Stoecker, T.; Stoecker, H.; Jiang, Y.; Zhou, K. Machine learning spatio-temporal epidemiological model to evaluate Germany-county-level COVID-19 risk. Mach. Learn. Sci. Technol. 2021, 2, 035031. [CrossRef] 49. Kriegerowski, M.; Petersen, G.M.; Vasyura-Bathke, H.; Ohrnberger, M. A deep convolutional neural network for localization of clustered earthquakes based on multistation full waveforms. Seismol. Res. Lett. 2019, 90, 510–516. [CrossRef] 50. Jozinovi ́ c, D.; Lomax, A.; Štajduhar, I.; Michelini, A. Transfer learning: Improving neural network based prediction of earthquake ground shaking for an area with insufficient training data. Geophys. J. Int. 2022, 229, 704–718. [CrossRef] 51. Otovi ́ c, E.; Njirjak, M.; Jozinovi ́ c, D.; Mauša, G.; Michelini, A.; Štajduhar, I. Intra-domain and cross-domain transfer learning for time series data—How transferable are the features? Knowl.-Based Syst. 2022, 239, 107976. [CrossRef]en_US
dc.description.obiettivoSpecifico8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunamien_US
dc.description.journalTypeJCR Journalen_US
dc.relation.eissn2227-7390en_US
dc.contributor.authorNjirjak, Marko-
dc.contributor.authorOtović, Erik-
dc.contributor.authorJozinović, Dario-
dc.contributor.authorLerga, Jonatan-
dc.contributor.authorMauša, Goran-
dc.contributor.authorMichelini, Alberto-
dc.contributor.authorŠtajduhar, Ivan-
dc.contributor.departmentFaculty of Engineering, University of Rijeka, 51000 Rijeka, Croatiaen_US
dc.contributor.departmentFaculty of Engineering, University of Rijeka, 51000 Rijeka, Croatiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentFaculty of Engineering, University of Rijeka, 51000 Rijeka, Croatiaen_US
dc.contributor.departmentFaculty of Engineering, University of Rijeka, 51000 Rijeka, Croatiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentFaculty of Engineering, University of Rijeka, 51000 Rijeka, Croatiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptFaculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia-
crisitem.author.deptFaculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia-
crisitem.author.deptFaculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia-
crisitem.author.deptFaculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptDepartment of Computer Engineering, Faculty of Engineering, University of Rijeka-
crisitem.author.orcid0000-0003-0274-4866-
crisitem.author.orcid0000-0001-5713-5879-
crisitem.author.orcid0000-0001-7443-3915-
crisitem.author.orcid0000-0002-4058-8449-
crisitem.author.orcid0000-0002-0643-4577-
crisitem.author.orcid0000-0001-6716-8551-
crisitem.author.orcid0000-0003-4758-7972-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Njirjak et al. - 2022 - The Choice of Time–Frequency Representations of No.pdfOpen Access published article4.14 MBAdobe PDFView/Open
Show simple item record

Page view(s)

54
checked on Apr 17, 2024

Download(s)

45
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric