Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/15967
DC FieldValueLanguage
dc.date.accessioned2023-01-23T08:01:23Z-
dc.date.available2023-01-23T08:01:23Z-
dc.date.issued2022-06-02-
dc.identifier.urihttp://hdl.handle.net/2122/15967-
dc.description.abstractThe detection level of a seismic network is a measure of its effective ability to record small earthquakes in a given area. It can vary in both space and time and depends on several factors such as meteorological conditions, anthropic noise, local soil conditions—all factors that affect the seismic noise level—as well as the quality and operating condition of the instruments. The ability to estimate the level of detection is of tremendous importance both in the design of a new network and in determining whether a given network can recognize seismicity consistently or needs to be improved in some of its parts. In this article, we determine the detection level of the Cuban seismic network using the empirically estimated seismic noise spectral level at each station site and some theoretical relationships to predict the signal amplitude of a seismic event at individual stations. The minimum local detectable magnitude thus depends on some network parameters such as the signal‐to‐noise ratio and the number of stations used in the calculation. We also demonstrate the effectiveness of our predictions by comparing the estimated detection level with those empirically determined from one year of data (i.e., the year 2020) of the Cuban seismic catalog. Our analysis shows, on the one hand, in which areas the current Cuban network should be improved, also depending on the regional pattern of faults, and, on the other hand, indicates the magnitude threshold that can be assumed homogeneously for the catalog of Cuban earthquakes in 2020. Because the adopted method can use current measurements of the seismic noise level (e.g., daily), the proposed analysis can also be configured for continuous monitoring of network state quality.en_US
dc.language.isoEnglishen_US
dc.publisher.nameSeismological Society of Americaen_US
dc.relation.ispartofSeismological Research Lettersen_US
dc.relation.ispartofseries4/93 (2022)en_US
dc.rightsAttribution-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/us/*
dc.subjectseismic monitoringen_US
dc.subjectdetectionen_US
dc.subjectcubaen_US
dc.subjectseismic networken_US
dc.subjectEvent Detection Levelen_US
dc.titleEvaluation of the Event Detection Level of the Cuban Seismic Networken_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber2048-2062en_US
dc.subject.INGV04.06. Seismologyen_US
dc.identifier.doi10.1785/0220220016en_US
dc.relation.referencesAho, A. V., B. W. Kernighan, and P. J. Weinberger (1987). The AWK Programming Language, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, United States. Aki, K., and P. G. Richards (1980). Quantitative Seismology, Theory and Methods. Volume I: 557 pp., 169 Illustrations. Volume II: 373 pp., 116 Illustrations, ISBN 0-7167-1058-7 (Vol. I), 0-7167-1059-5 (Vol. II), Freeman, San Francisco, California. Álvarez, L. (2000). Sismicidad de Cuba y estructura de la corteza en el Caribe, ISBN959-02-0242-X, Editorial Academia, LaHabana, Cuba. Álvarez, J. L., andV. I.Bune (1977).Estimaciónde lapeligrosidad sísmica de la región suroriental de Cuba, Fizika Zemli, no. 10, 54–67 (in Russian). Álvarez, L., T. Chuy, and M. Cotilla (1991). Peligrosidad sísmica de Cuba. Una aproximación a la regionalización sísmica del territorio nacional, Revista Geofísica del Instituto Panamericano de Geografía e Historia, no. 35, 125–150 (in Spanish). Álvarez, L., T. Chuy, J. García, B. Moreno, H. Álvarez, M. Blanco, O. Expósito, O. González, and A. I. Fernández (1999). An earthquake catalogue of Cuba and neighbouring areas, ICTP Internal Rept. ic/ir/99/1, Miramare, Trieste, Italy, 60 pp. Arango, E. D. A. (2009). Análisis geodinámico y sismotectónico del extremo oriental de Cuba, Acta GGMDebrecina 4, 43–52 (in Spanish). Arango, E. D. A. (2021). Sismicidad Registrada en el territorio nacional y estado de la red de estaciones del servicio sismológico nacional, Vicedirección Técnica, Archivos de Centro Nacional de Investigaciones Sismológicas, Ministerio de Ciencia, Tecnología y Medio Ambiente, 2020 (in Spanish). Bormann, P., and E. A. Bergman (2002). The new IASPEI manual of seismological observatory practice (NMSOP), Seismol. Res. Lett. 71, no. 5, 510–518. Brune, J. N. (1970). Tectonic stress and spectra of seismic shear waves from earthquake, J. Geophys. Res. 75, 4997–5009. Calais, E., and M. Lépinay (1989). Géométrie et régime tectonique le long d une limite de plaques en coulissage: la frontiére nord-Caraïbe de Cuba á Hispaniola Grandes Antilles, Géodynamique. C R. Acad. Sci. Paris, t. 308, 131–135 (in French). Calais, E., and M. Lépinay (1993). Semiquantitative modeling of strain and kinematics along the Caribbean/North America strike-slip plate boundary zone, J. Geophys. Res. Atmos. 98, 8293–8308. CENAIS (2020). Catálogo de terremotos (extracción parcial del año 2020 del catalogo general de terremotos), Fondos del CENAIS (in Spanish). Chuy, T. (1999). Macrosísmica de Cuba y su aplicación en los estimados de peligrosidad y microzonación Sísmica, Tesis en opción al Grado de Doctor en Ciencias Geofísicas, Fondos del MES y CENAIS, 150 pp. (in Spanish). Clinton, J., G. Cua, V. Huérfano, C. von Hillebrandt-Andrade, and J. Martinez Cruzado (2006). The current state of seismic monitoring in Puerto Rico, Seismol. Res. Lett. 77, 532–543. D’Alessandro, A., D. Luzio, G. D’Anna, and G. Mangano (2011). Seismic network evaluation through simulation: An application to the Italian National Seismic Network, Bull. Seismol. Soc. Am. 101, 1213–1232. De Zeeuw-van Dalfsen, E., and R. Sleeman (2018). A permanent, realtime monitoring network for the volcanoes mount scenery and the Quill in the Caribbean Netherlands, Geosciences 8, no. 9, doi:10.3390/geosciences8090320. DeMets, C. (1990). Earthquake slip vectors and estimates of presentday plate motions, J. Geophys. Res. 98, no. B4, 6703–6714. Deng, J., and L. Sykes (1995). Determination of Euler polo for contemporary relative motion of Caribbean andNorth American plates using slip vectors of interpolate earthquakes, Tectonics 14, no 1, 39–53. Diez Zaldívar, E. (1999). Cuban National Seismo-Telemetric Network, Abdus Salam Internacional Centre for Theoretical Physics (ICTP), Preprint 1999038. Diez Zaldívar, E. R., M. C. Mustelier, C. M. Moracén, R. P. Cláres, V. Poveda Brossard, Z. Yinxing, C. Yang, and W. Fengxia (2014). Modernización de la red sísmica cubana. Instalación, calibración y puesta a punto, Revista de la Facultad de Ingeniería Universidad Central de Venezuela 29, no. 2, 69–78 (in Spanish). Franceschina, G., P. Aaugliera, S. Lovati, and M. Massa (2015). Surface seismic monitoring of a natural gas storage reservoir in the Po Plain (northern Italy), Boll. Geof. Teor. Appl. 56, no. 4, 489– 504, doi: 10.4430/bgta0165. Gestermann, N., T. Plenefisch, T. Kraft, and M. Herrmann (2016). Seismic network detection capability within the natural gas fields in northern Germany, ESC General Assembly 2016, Trieste (Italy), ESC2016-511, Poster. GMT (2021). The Generic Mapping Tools documentation, The GMT Team, available at https://docs.generic-mapping-tools.org/latest/# (last accessed February 2021). Gonzales, O. F., and E. D. Arango (1996). Boletín Sismológico Cubano, Red de estaciones e investigaciones sismológicas en Cuba, ISBN 959-02-0244-6, Editorial Academia, La Habana, Cuba, 7–17. Greig, W., and N. Ackerley (2014). Microseismic network performance estimation: Comparing predictions to an earthquake catalogue, EGU General Assembly Conference 2014, Geophys. Res. Abstracts, Vol. 16, EGU2014-6361. Helmholtz-Centre Potsdam—GFZ German Research Centre for Geosciences and gempa GmbH (2008). The SeisComP seismological software package, GFZ Data Services, doi: 10.5880/GFZ.2.4.2020.003. Heubeck, C., and P. Mann (1991). Geologic evaluation of plate kinematic models for the North American-Caribbean plate boundary zone, Tectonophysis 191, 1–26. IRIS (2017). Software downloads—PQLX, Incorporated Research Institutions for Seismology, available at https://ds.iris.edu/ds/nodes/dmc/software/downloads/pqlx/ (last accessed February 2022). IRIS (2022). miniSEED, Incorporated Research Institutions for Seismology, available at https://ds.iris.edu/ds/nodes/dmc/data/formats/miniseed/ (last accessed February 2022). Lundgren, P. R., and R. M. Russo (1996). Finite element modelling of crustal deformation in the North America-Caribbean plate boundary zone, J. Geophys. Res. 101, no. B5, 11,317–11,327. Mann, P. (1999). Caribbean sedimentary basins: Classification and tectonic setting, in Sedimentary Basins of the World, Caribbean Basins, P. Mann (Editor), Elsevier, Amsterdam, Netherlands, 3–31. Mann, P., E. Calais, and V. Huérfano (2004). Earthquake shakes big bend region of North America Caribbean boundary zone, EOS Trans. AGU 85, 24 pp. Mann, P., F. Taylor, R. Edwards, and T.-L. Ku (1995). Actively evolving microplate formation by oblique collision and side-ways motion along strike-slip faults: An example from the northeastern Caribbean plate margin, Tectonophysics 246, 1–69. Marzorati, S., and M. Cattaneo (2016). Stima automatica della magnitudo minima rilevabile dalla rete sismica ReSIICO—Automatic magnitude detection of the seismic network ReSIICO, Quaderni di Geofisica 2016, Istituto Nazionale di Geofisica e Vulcanologia (INGV), 21 pp. (in Italian). McNamara, D. E., and R. I. Boaz (2005). Seismic noise analysis system using power spectral density probability density functions: A stand-alone software package, U.S. Geol. Surv. Open-File Rept. 2005-1438, U.S. Department of the Interior, U.S. Geological Survey. McNamara, D. E., and R. I. Boaz (2010). PQLX: A seismic data quality control system description, applications, and user’s manual, U.S. Geol. Surv. Open-File Rept. 2010-1292, doi: 10.3133/ofr20101292. McNamara, D. E., C. Von Hillebrandt-Andrade, J. M. Saurel, V. Huerfano, and L. Lynch (2016). Quantifying 10 years of improved earthquake monitoring performance in the Caribbean region, Seismol. Res. Lett. 87, no. 1, doi: 10.1785/0220150095. Moreno, B. (2002a). The new Cuban seismograph network, Seismol. Res. Lett. 73, 504–517. Moreno, B. (2002b). New magnitude scales and attenuation relation for eastern Cuba, Ph.D. Thesis. Crustal structure and seismicity of Cuba and web-based applications for earthquake analysis, University of Bergen, Norway. Moreno, B., M. Grandison, and K. Atakan (2002). Crustal velocity model along the southern Cuba margin. Implications for the tectonic regime at an active plate boundary, Geophys. J. Int. 151, 632–645. Nanjo, K. Z., D. Schorlemmer, J. Woessner, S. Wiemer, and D. Giardini (2010). Earthquake detection capability of the Swiss seismic network, Geophys. J. Int. 181, no. 3, 1713–1724. Ottemoller, V., and J. Havskov (2014). Seisan earthquake analysis software for Windows, Solaris, Linux and Macosx, 2014. Peterson, J. (1993). Observation and modelling of seismic background noise, U.S. Geol. Surv. Open-File Rept. 93-322, 95 pp. Petersen, G. M., S. Cesca, M. Kriegerowski, and , and the AlpArray Working Group (2019). Automated quality control for large seismic networks: Implementation and application to the alparray seismic network, Seismol. Res. Lett. 90, no. 3, 1177–1190, doi:10.1785/0220180342 Poveda Brossard, V., and E. R. Diez Zaldívar (2022). Ambient seismic noise in Cuba: analysis of broadband seismic stations in the Cuban seismic network, DYNA 89, no. 220, 145–153, doi:10.15446/dyna.v89n220.96966. Raymer, D. G., and H. D. Leslie (2011). Microseismic network design - estimating event detection. 73rd EAGE Conference and Exhibition 2011 incorporating SPE EUROPEC 2011: Unconventional Resources and the Role of Technology, EAGE 2011, no. 1, 595–599. Rosencrantz, E., and P. Mann (1991). SeaMARC II mapping of transform faults in the Cayman trough, Caribbean Sea, Geology 19, no. 7, 690–693. Schorlemmer, D., and J. Woessner (2008). Probability of detecting an earthquake, Bull. Seismol. Soc. Am. 98, no. 5, 2103–2217. Serrano, M., and L. Álvarez (1983). Desarrollo de la sismología instrumental en Cuba, Investigaciones Sismológicas en Cuba, no. 4, 5–20 (in Spanish). Wessel, P., and W. Smith (1991). Free software helps map and display data, EOS Trans. AGU 72, 441–461. Wessel, P., W. H. F. Smith, R. Scharroo, J. F. Luis, and F. Wobbe (2013). Generic mapping tools: Improved version released, EOS Trans. AGU 94, 409–410, doi: 10.1002/2013EO450001. Zivčić, M., and J. Ravnik (2002). Detectability and earthquake location accuracy modeling of seismic networks, IS 7.4, in New Manual of Seismological Observatory PracNce,P. Bormann (Editor), Vol. 1, GeoForschungsZentrum, Potsdam, Germany.en_US
dc.description.obiettivoSpecifico5T. Sismologia, geofisica e geologia per l'ingegneria sismicaen_US
dc.description.obiettivoSpecifico1IT. Reti di monitoraggio e sorveglianzaen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn0895-0695en_US
dc.contributor.authorDiez Zaldivar, Eduardo Rafael-
dc.contributor.authorPriolo, Enrico-
dc.contributor.authorSandron, Denis-
dc.contributor.authorPoveda Brossard, Viana-
dc.contributor.authorCattaneo, Marco-
dc.contributor.authorMarzorati, Simone-
dc.contributor.authorPalau Clares, Raúl-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptOGS-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-1323-8451-
crisitem.author.orcid0000-0002-1143-9954-
crisitem.author.orcid0000-0003-1971-8592-
crisitem.author.orcid0000-0001-6017-8861-
crisitem.author.orcid0000-0002-5803-4882-
crisitem.author.orcid0000-0003-3864-2159-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
SRL-D-22-00016_R3.pdfaccepted version8.84 MBAdobe PDFView/Open
Show simple item record

Page view(s)

139
checked on Apr 24, 2024

Download(s)

11
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric