Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/15963
DC FieldValueLanguage
dc.date.accessioned2023-01-23T07:33:48Z-
dc.date.available2023-01-23T07:33:48Z-
dc.date.issued2023-01-13-
dc.identifier.urihttp://hdl.handle.net/2122/15963-
dc.description.abstractfirst_pagesettingsOrder Article Reprints Open AccessArticle Marine Litter Tracking System: A Case Study with Open-Source Technology and a Citizen Science-Based Approach by Silvia Merlino 1,*ORCID,Marina Locritani 2ORCID,Antonio Guarnieri 3ORCID,Damiano Delrosso 3,Marco Bianucci 1ORCID andMarco Paterni 4 1 CNR-ISMAR (Istituto di Scienze Marine-Sede di La Spezia), 19032 La Spezia, Italy 2 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma 2, 00143 Roma, Italy 3 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, 40127 Bologna, Italy 4 CNR-IFC (Istituto di Fisiologia Clinica-Pisa), 56124 Pisa, Italy * Author to whom correspondence should be addressed. Sensors 2023, 23(2), 935; https://doi.org/10.3390/s23020935 Received: 28 November 2022 / Revised: 9 January 2023 / Accepted: 10 January 2023 / Published: 13 January 2023 (This article belongs to the Special Issue Enabling Citizen Science in Communal Smart Environments with IoT Technology) Download Browse Figures Review Reports Versions Notes Abstract It is well established that most of the plastic pollution found in the oceans is transported via rivers. Unfortunately, the main processes contributing to plastic and debris displacement through riparian systems is still poorly understood. The Marine Litter Drifter project from the Arno River aims at using modern consumer software and hardware technologies to track the movements of real anthropogenic marine debris (AMD) from rivers. The innovative “Marine Litter Trackers” (MLT) were utilized as they are reliable, robust, self-powered and they present almost no maintenance costs. Furthermore, they can be built not only by those trained in the field but also by those with no specific expertise, including high school students, simply by following the instructions. Five dispersion experiments were successfully conducted from April 2021 to December 2021, using different types of trackers in different seasons and weather conditions. The maximum distance tracked was 2845 km for a period of 94 days. The activity at sea was integrated by use of Lagrangian numerical models that also assisted in planning the deployments and the recovery of drifters. The observed tracking data in turn were used for calibration and validation, recursively improving their quality. The dynamics of marine litter (ML) dispersion in the Tyrrhenian Sea is also discussed, along with the potential for open-source approaches including the “citizen science” perspective for both improving big data collection and educating/awareness-raising on AMD issues.en_US
dc.description.sponsorshipThis research was funded by the INGV “ML-DAR Project, ricerca libera—9999.521 RL2019”; moreover, this paper is part of the NAUTILOS project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101000825.en_US
dc.language.isoEnglishen_US
dc.publisher.nameMDPIen_US
dc.relation.ispartofSensorsen_US
dc.relation.ispartofseries2/23 (2023)en_US
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectIoT technologyen_US
dc.subjectcitizen scienceen_US
dc.subjectmarine litteren_US
dc.subjectsmart tracking devicesen_US
dc.subjectLagrangian dispersal modelsen_US
dc.subjectdriftersen_US
dc.titleMarine Litter Tracking System: A Case Study with Open-Source Technology and a Citizen Science-Based Approachen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber935en_US
dc.subject.INGV03.02. Hydrologyen_US
dc.identifier.doi10.3390/s23020935en_US
dc.relation.referencesGalgani, F.; Hanke, G.; Maes, T. Global Distribution, Composition and Abundance of Marine Litter. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef] Boucher, J.; Bilard, G. The Mediterranean: Mare Plasticum; IUCN: Gland, Switzerland, 2020. Sutinen, J.G. Marine Debris: Sources, Impacts, and Solutions; Coe, J.M., Rogers, D.B., Eds.; Springer: New York, NY, USA, 1997; pp. 161–170. [Google Scholar] [CrossRef] Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef] Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] Meijer, L.J.; van Emmerik, T.; van der Ent, R.; Schmidt, C.; Lebreton, L. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Sci. Adv. 2021, 7, eaaz5803. [Google Scholar] [CrossRef] González-Fernández, D.; Cózar, A.; Hanke, D.; Viejo, J.; Morales-Caselles, C.; Bakiu, R.; Barceló, D.; Bessa, F.; Bruge, A.; Cabrera, M.; et al. Floating macrolitter leaked from Europe into the ocean. Nat. Sustain. 2021, 4, 474–483. [Google Scholar] [CrossRef] Desforges, J.-P.W.; Galbraith, M.; Ross, P.S. Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contam. Toxicol. 2015, 69, 320–330. [Google Scholar] [CrossRef] Wesch, C.; Bredimus, K.; Paulus, M.; Klein, R. Towards the suitable monitoring of ingestion of microplastics by marine biota: A review. Environ. Pollut. 2016, 218, 1200–1208. [Google Scholar] [CrossRef] van Emmerik, T.; Strady, E.; Kieu-Le, T.C.; Nguyen, L.; Gratiot, N. Seasonality of riverine macroplastic transport. Sci. Rep. 2019, 9, 13549. [Google Scholar] [CrossRef] Lebreton, L.; Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019, 5, 6. [Google Scholar] [CrossRef] MSFD, 2008/56/EC—Commission, E. 2008. Available online: https://www.eea.europa.eu/policy-documents/2008-56-ec (accessed on 11 January 2023). COM/2018/028 Final—Commission, E. 2018. Available online: https://www.europarc.org/wp-content/uploads/2018/01/Eu-plastics-strategy-brochure.pdf (accessed on 11 January 2023). United Nations Environment Programme. Single-Use Plastics: A Roadmap for Sustainability. In Addressing Single-Use Plastic Products Pollution Using a Life Cycle Approach; UNEP: Nairobi, Kenya, 2018. [Google Scholar] Hanke, G.; Galgani, F.; Werner, S.; Oosterbaan, L.; Nilsson, P.; Fleet, D.; Kinsey, S.; Thompson, R.C.; van Franeker, J.; Vlachogianni, T.; et al. Guidance on Monitoring of Marine Litter in European Seas; Publications Office of the European Union: Luxembourg, 2013; p. 128. [Google Scholar] [CrossRef] Siegel, D.A.; Kinlan, B.P.; Gaylord, B.; Gaines, S.D. Lagrangian descriptions of marine larval dispersion. Mar. Ecol. Prog. Ser. 2003, 260, 83–96. [Google Scholar] [CrossRef] Thiel, M.; Gutow, L. The ecology of rafting in the marine environment. II. The rafting organisms and community. In Oceanography and Marine Biology; CRC Press: Boca Raton, FL, USA, 2005; pp. 289–428. [Google Scholar] Morgan, S.G.; Shanks, A.L.; MacMahan, J.; Reniers, J.H.M.; Griesemer, C.D.; Jarvis, M.; Fujimura, A.G. Surf zones regulate larval supply and zooplankton subsidies to nearshore communities. Limnol. Oceanogr. 2017, 62, 2811–2828. [Google Scholar] [CrossRef] Bini, M.; Casarosa, N.; Luppichini, M. Exploring the Relationship between River Discharge and Coastal Erosion: An Integrated Approach Applied to the Pisa Coastal Plain (Italy). Remote Sens. 2021, 13, 226. [Google Scholar] [CrossRef] Reed, M.; Turner, C.; Odulo, A. The role of wind and emulsification in modelling oil spill and surface drifter trajectories. Spill Sci. Technol. Bull. 1994, 1, 143–157. [Google Scholar] [CrossRef] Schroeder, K.; Chiggiato, J.; Haza, A.C.; Griffa, A.; Özgökmen, T.M.; Zanasca, P.; Molcard, A.; Borghini, M.; Poulain, P.M.; Gerin, R.; et al. Targeted Lagrangian sampling of submesoscale dispersion at a coastal frontal zone. Geophys. Res. Lett. 2012, 39, 11. [Google Scholar] [CrossRef] Breivik, Ø.; Allen, A.; Maisondieu, C.; Olagnon, M. Advances in search and rescue at sea. Ocean. Dyn. 2013, 63, 83–88. [Google Scholar] [CrossRef] Berta, M.; Bellomo, L.; Magaldi, M.G.; Griffa, A.; Molcard, A.; Marmain, J.; Borghini, M.; Taillandier, V. Estimating Lagrangian transport blending drifters with HF radar data and models: Results from the TOSCA experiment in the Ligurian Current (North Western Mediterranean Sea). Prog. Oceanogr. 2014, 128, 15–29. [Google Scholar] [CrossRef] Bellomo, L.; Griffa, A.; Cosoli, S.; Falco, P.; Gerin, R.; Iermano, I.; Kalampokis, A.; Kokkini, Z.; Lana, A.; Magaldi, M.G.; et al. Toward an integrated HF radar network in the Mediterranean Sea to improve search and rescue and oil spill response: The TOSCA project experience. J. Oper. Oceanogr. 2015, 8, 95–107. [Google Scholar] [CrossRef] Zhang, J.; Teixeira, Â.P.; Guedes Soares, C.; Yan, X. Probabilistic modelling of the drifting trajectory of an object under the effect of wind and current for maritime search and rescue. Ocean. Eng. 2017, 129, 253–264. [Google Scholar] [CrossRef] D’Asaro, E.A.; Shcherbina, A.Y.; Klymak, J.M.; Molemaker, J.; Novelli, G.; Guigand, C.M.; Haza, A.C.; Haus, B.K.; Ryan, E.H.; Jacobs, G.A.; et al. Ocean convergence and the dispersion of flotsam. Proc. Natl. Acad. Sci. USA 2018, 115, 1162–1167. [Google Scholar] [CrossRef] Lebreton, L.-M.; Greer, S.; Borrero, J. Numerical modelling of floating debris in the world’s oceans. Mar. Pollut. Bull. 2012, 64, 653–661. [Google Scholar] [CrossRef] Maximenko, N.; Hafner, J.; Niiler, P. Pathways of marine debris derived from trajectories of Lagrangian drifters. Mar. Pollut. Bull. 2012, 65, 51–62. [Google Scholar] [CrossRef] van Sebille, E.; England, M.H.; Froyland, G. Origin, dynamics and evolution of ocean garbage patches from observed surface drifters. Environ. Res. Lett. 2012, 7, 044040. [Google Scholar] [CrossRef] Zambianchi, E.; Trani, M.; Falco, P. Lagrangian transport of marine litter in the Mediterranean Sea. Front. Environ. Sci. 2017, 5, 5. [Google Scholar] [CrossRef] Liubartseva, S.; Coppini, G.; Lecci, R.; Clementi, E. Tracking plastics in the Mediterranean: 2D Lagrangian model. Mar. Pollut. Bull. 2018, 129, 151–162. [Google Scholar] [CrossRef] van Emmerik, T.; Schwarz, A. Plastic debris in rivers. Wiley Interdiscip. Rev. Water 2020, 7, e1398. [Google Scholar] [CrossRef] Schöneich-Argent, R.I.; Freund, H. Trashing our own “backyard”—Investigating dispersal and accumulation of floating litter from coastal, riverine, and offshore sources in the German Bight using a citizen science-based wooden drifter recapture approach. Mar. Environ. Res. 2020, 162, 105115. [Google Scholar] [CrossRef] [PubMed] Chassignet, E.P.; Xu, X.; Zavala-Romero, O. Tracking Marine Litter With a Global Ocean Model: Where Does It Go? Where Does It Come From? Front. Mar. Sci. 2021, 8, 667591. [Google Scholar] [CrossRef] Cloux, S.; Allen-Perkins, S.; de Pablo, H.; Garaboa-Paz, D.; Montero, P.; Pérez-Muñuzuria, V. Validation of a Lagrangian model for large-scale macroplastic tracer transport using mussel-peg in NW Spain (Ría de Arousa). Sci. Total. Environ. 2022, 822, 153338. [Google Scholar] [CrossRef] Andrady, A.L. Plastics in marine environment. A technical perspective. In Proceedings of the Plastic Debris Rivers to Sea Conference, Algalita Marine Research Foundation, Long Beach, CA, USA, 7–9 September 2005. [Google Scholar] van Sebille, E.; Aliani, S.; Law, K.L.; Maximenko, N.; Alsina, J.M.; Bagaev, A.; Bergmann, M.; Chapron, B.; Chubarenko, I.; Cózar, A.; et al. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 2020, 15, 023003. [Google Scholar] [CrossRef] Carlton, J.T.; Chapman, J.W.; Geller, J.B.; Miller, J.A.; Carlton, D.A.; McCuller, M.I.; Treneman, N.C.; Steves, B.P.; Ruiz, G.M. Tsunami-driven rafting: Transoceanic species dispersal and implications for marine biogeography. Science 2017, 357, 1402–1406. [Google Scholar] [CrossRef] Merlino, S.; Paterni, M.; Berton, A.; Massetti, L. Unmanned Aerial Vehicles for Debris Survey in Coastal Areas: Long-Term Monitoring Programme to Study Spatial and Temporal Accumulation of the Dynamics of Beached Marine Litter. Remote Sens. 2020, 12, 1260. [Google Scholar] [CrossRef] van Sebille, E.; Wilcox, C.; Lebreton, L.C.M.; Maximenko, N.A.; Hardesty, B.D.; van Franeker, J.A.; Eriksen, M.; Siegel, D.; Galgani, F.; Law, K.L. A global inventory of small floating plastic debris. Environ. Res. Lett. 2015, 10, 124006. [Google Scholar] [CrossRef] van der Zanden, J. Sand Transport Processes in the Surf and Swash Zones. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2016. [Google Scholar] [CrossRef] Pereiro, D.; Souto, C.; Gago, J. Calibration of a marine floating litter transport model. J. Oper. Oceanogr. 2018, 11, 125–133. [Google Scholar] [CrossRef] Kataoka, T.; Hinata, H. Evaluation of beach cleanup effects using linear system analysis. Mar. Pollut. Bull. 2015, 91, 73–81. [Google Scholar] [CrossRef] [PubMed] Politikos, D.V.; Tsiaras, K.; Papatheodorou, G.; Anastasopoulou, A. Modeling of floating marine litter originated from the Eastern Ionian Sea: Transport, residence time and connectivity. Mar. Pollut. Bull. 2020, 150, 110727. [Google Scholar] [CrossRef] Mansui, J.; Darmon, G.; Ballerini, T.; van Canneyt, O.; Ourmieres, Y.; Miaud, C. Predicting marine litter accumulation patterns in the Mediterranean basin: Spatio-temporal variability and comparison with empirical data. Prog. Oceanogr. 2020, 182, 102268. [Google Scholar] [CrossRef] Critchell, K.; Lambrechts, J. Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes? Estuar. Coast. Shelf. Sci. 2016, 171, 111–122. [Google Scholar] [CrossRef] Chenillat, F.; Huck, T.; Maes, C.; Grima, N.; Blanke, B. Fate of floating plastic debris released along the coasts in a global ocean model. Mar. Pollut. Bull. 2021, 165, 112116. [Google Scholar] [CrossRef] Andriolo, U.; Gonçalves, G. Is coastal erosion a source of marine litter pollution? Evidence of coastal dunes being a reservoir of plastics. Mar. Pollut. Bull. 2022, 174, 113307. [Google Scholar] [CrossRef] Sybrandy, A.L.; Niiler, P.P. The WOCE/TOGA SVP Lagrangian Drifter Construction Manual; University of California: San Diego, CA, USA; Scripps Institution of Oceanography: La Jolla, CA, USA, 1992. [Google Scholar] Davis, R.E. Drifter observations of coastal surface currents during CODE: The statistical and dynamical views. J. Geophys. Res. Atmos. 1985, 90, 4756–4772. [Google Scholar] [CrossRef] Novelli, G.; Guigand, C.M.; Cousin, C.; Ryan, E.H.; Laxague, N.J.M.; Dai, H.; Haus, B.K.; Özgökmen, T.M. A Biodegradable Surface Drifter for Ocean Sampling on a Massive Scale. J. Atmospheric Ocean. Technol. 2017, 34, 2509–2532. [Google Scholar] [CrossRef] Goodman, R.H.; Simecek-Beatty, D.; Hodgins, D. Tracking buoys for oil spills. In Proceedings of the 1995 International Oil Spill Conference, Long Beach, CA, USA, 27 February–2 March 1995; pp. 3–8. [Google Scholar] Drijfhout, S.S.; Maier-Reimer, E.; Mikolajewicz, U. Tracing the conveyor belt in the Hamburg large-scale geostrophic ocean general circulation model. J. Geophys. Res. Ocean. 1996, 101, 22563–22575. [Google Scholar] [CrossRef] Blanke, B.; Raynaud, S. Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and Lagrangian Approach from GCM Results. J. Phys. Oceanogr. 1997, 27, 1038–1053. [Google Scholar] [CrossRef] Döös, K.; Nycander, J.; Coward, A.C. Lagrangian decomposition of the Deacon Cell. J. Geophys. Res. Atmos. 2008, 113, C07028. [Google Scholar] [CrossRef] Ypma, S.L.; van Sebille, E.; Kiss, A.E.; Spence, P. The separation of the East Australian Current: A Lagrangian approach to potential vorticity and upstream control. J. Geophys. Res. Ocean. 2015, 121, 758–774. [Google Scholar] [CrossRef] van Sebille, E.; Griffies, S.M.; Abernathey, R.; Adams, T.P.; Berloff, P.; Biastoch, A.; Blanke, B.; Chassignet, E.P.; Cheng, Y.; Cotter, C.J.; et al. Lagrangian ocean analysis: Fundamentals and practices. Ocean. Model. 2018, 121, 49–75. [Google Scholar] [CrossRef] Koszalka, I.; LaCasce, J.H.; Orvik, K.A. Relative dispersion in the Nordic Seas. J. Mar. Res. 2009, 67, 411–433. [Google Scholar] [CrossRef] van Sebille, E.; Waterman, S.; Barthel, A.; Lumpkin, R.; Keating, S.R.; Fogwill, C.; Turney, C. Pairwise surface drifter separation in the western Pacific sector of the Southern Ocean. J. Geophys. Res. Ocean. 2015, 120, 6769–6781. [Google Scholar] [CrossRef] Corrado, R.; Lacorata, G.; Palatella, L.; Santoleri, R.; Zambianchi, E. General characteristics of relative dispersion in the ocean. Sci. Rep. 2017, 7, srep46291. [Google Scholar] [CrossRef] Molcard, A.; Poulain, P.; Forget, P.; Griffa, A.; Barbin, Y.; Gaggelli, J.; De Maistre, J.; Rixen, M. Comparison between VHF radar observations and data from drifter clusters in the Gulf of La Spezia (Mediterranean Sea). J. Mar. Syst. 2009, 78, S79–S89. [Google Scholar] [CrossRef] Haza, A.C.; Özgökmen, T.M.; Griffa, A.; Molcard, A.; Poulain, P.-M.; Peggion, G. Transport properties in small-scale coastal flows: Relative dispersion from VHF radar measurements in the Gulf of La Spezia. Ocean. Dyn. 2010, 60, 861–882. [Google Scholar] [CrossRef] Haza, A.C.; Griffa, A.; Martin, P.; Molcard, A.; Özgökmen, T.M.; Poje, A.C.; Barbanti, R.; Book, J.W.; Poulain, P.M.; Rixen, M.; et al. Model-based directed drifter launches in the Adriatic Sea: Results from the DART experiment. Geophys. Res. Lett. 2007, 34, 10605. [Google Scholar] [CrossRef] Poulin, P.-M.; Bussani, A.; Gerin, R.; Jungwirth, R.; Mauri, E.; Menna, M.; Notarstefano, G.; Poulain, P.-M. Mediterranean Surface Currents Measured with Drifters: From Basin to Subinertial Scales. Oceanography 2013, 26, 38–47. [Google Scholar] [CrossRef] Subbaraya, S.; Breitenmoser, A.; Molchanov, A.; Muller, J.; Oberg, C.; Caron, D.A.; Sukhatme, G.S. Circling the Seas: Design of Lagrangian Drifters for Ocean Monitoring. IEEE Robot. Autom. Mag. 2016, 23, 42–53. [Google Scholar] [CrossRef] Lumpkin, R.; Özgökmen, T.; Centurioni, L. Advances in the Application of Surface Drifters. Annu. Rev. Mar. Sci. 2017, 9, 59–81. [Google Scholar] [CrossRef] Laxague, N.J.M.; Özgökmen, T.M.; Haus, B.K.; Novelli, G.; Shcherbina, A.; Sutherland, P.; Guigand, C.M.; Lund, B.; Mehta, S.; Alday, M.; et al. Observations of Near-Surface Current Shear Help Describe Oceanic Oil and Plastic Transport. Geophys. Res. Lett. 2018, 45, 245–249. [Google Scholar] [CrossRef] Meyerjürgens, J.; Badewien, T.H.; Garaba, S.P.; Wolff, J.-O.; Zielinski, O. A state-of-the-art compact surface drifter reveals pathways of floating marine litter in the German bight. Front. Mar. Sci. 2019, 6, 58. [Google Scholar] [CrossRef] Stanev, E.V.; Badewien, T.H.; Freund, H.; Grayek, S.; Hahner, F.; Meyerjürgens, J.; Ricker, M.; Schöneich-Argent, R.I.; Wolff, J.-O.; Zielinski, O. Extreme westward surface drift in the North Sea: Public reports of stranded drifters and Lagrangian tracking. Cont. Shelf Res. 2019, 177, 24–32. [Google Scholar] [CrossRef] Merlino, S.; Locritani, M.; Stroobant, M.; Mioni, E.; Tosi, D. SeaCleaner: Focusing Citizen Science and Environment Education on Unraveling the Marine Litter Problem. Mar. Technol. Soc. J. 2015, 49, 99–118. [Google Scholar] [CrossRef] Merlino, S. SeaCleaner Project: Monitoring Marine Litter on Beaches around the “Pelagos Sanctuary”. Hum. Ecol. J. Commonw. Hum. Ecol. 2016, 26, 19. [Google Scholar] Giovacchini, A.; Merlino, S.; Locritani, M.; Stroobant, M. Spatial distribution of marine litter along italian coastal areas in the Pelagos sanctuary (Ligurian Sea—NW Mediterranean Sea): A focus on natural and urban beaches. Mar. Pollut. Bull. 2018, 130, 140–152. [Google Scholar] [CrossRef] Merlino, S.; Abbate, M.; Pietrelli, L.; Canepa, P.; Varella, P. Marine litter detection and correlation with the seabird nest content. Rend. Lince Sci. Fis. E Nat. 2018, 29, 867–875. [Google Scholar] [CrossRef] Merlino, S.; Locritani, M.; Bernardi, G.; Como, C.; Legnaioli, S.; Palleschi, V.; Abbate, M. Spatial and Temporal Distribution of Chemically Characterized Microplastics within the Protected Area of Pelagos Sanctuary (NW Mediterranean Sea): Focus on Natural and Urban Beaches. Water 2020, 12, 3389. [Google Scholar] [CrossRef] Merlino, S.; Paterni, M.; Locritani, M.; Andriolo, U.; Gonçalves, G.; Massetti, L. Citizen Science for Marine Litter Detection and Classification on Unmanned Aerial Vehicle Images. Water 2021, 13, 3349. [Google Scholar] [CrossRef] Poeta, G.; Battisti, C.; Bazzichetto, M.; Acosta, A.T.R. The Cotton Buds Beach: Marine Litter Assessment along the Tyrrhenian Coast of Central Italy Following the Marine Strategy Framework. Mar. Pollut. Bull. 2016, 113, 266–270. [Google Scholar] [CrossRef] Portman, M.E.; Brennan, R.E. Marine litter from beach-based sources: Case study of an Eastern Mediterranean coastal town. Waste Manag. 2017, 69, 535–544. [Google Scholar] [CrossRef] Wilson, S.P.; Verlis, K.M. The ugly face of tourism: Marine debris pollution linked to visitation in the southern Great Barrier Reef, Australia. Mar. Pollut. Bull. 2017, 117, 239–246. [Google Scholar] [CrossRef] Willis, K.; Hardesty, B.D.; Kriwoken, L.; Wilcox, C. Differentiating littering, urban runoff and marine transport as sources of marine debris in coastal and estuarine environments. Sci. Rep. 2017, 7, srep44479. [Google Scholar] [CrossRef] Vesman, A.V.; Bashmachnikov, I.L.; Golubkin, P.A.; Raj, R.P. The coherence of the oceanic heat transport through the Nordic seas: Oceanic heat budget and interannual variability. Ocean. Sci. Discuss 2020, 1–24. [Google Scholar] [CrossRef] Ambrose, K.K.; Box, C.; Boxall, J.; Brooks, A.; Eriksen, M.; Fabres, J.; Fylakis, G.; Walker, T.R. Spatial trends and drivers of marine debris accumulation on shorelines in South Eleuthera, The Bahamas using citizen science. Mar. Pollut. Bull. 2019, 142, 145–154. [Google Scholar] [CrossRef] Rangel-Buitrago, N.; Mendoza, A.V.; Gracia, A.; Mantilla-Barbosa, E.; Arana, V.A.; Trilleras, J.; Arroyo-Olarte, H. Litter impacts on cleanliness and environmental status of Atlantico department beaches, Colombian Caribbean coast. Ocean. Coast. Manag. 2019, 179, 104835. [Google Scholar] [CrossRef] Araújo, M.C.; Costa, M. An analysis of the riverine contribution to the solid wastes contamination of an isolated beach at the Brazilian Northeast. Manag. Environ. Qual. Int. J. 2007, 18, 6–12. [Google Scholar] [CrossRef] Millot, C. Circulation in the Western Mediterranean Sea. J. Mar. Syst. 1999, 20, 423–442. [Google Scholar] [CrossRef] Pinardi, N.; Zavatarelli, M.; Adani, M.; Coppini, G.; Fratianni, C.; Oddo, P.; Simoncelli, S.; Tonani, M.; Lyubartsev, V.; Dobricic, S.; et al. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Prog. Oceanogr. 2015, 132, 318–332. [Google Scholar] [CrossRef] Millot, C. Circulation in the western Mediterranean-sea. Oceanologica Acta 1987, 10, 143–149. [Google Scholar] [CrossRef] Astraldi, M.; Gasparini, G.P.; Manzella, G.M.R.; Hopkins, T.S. Temporal variability of currents in the eastern Ligurian Sea. J. Geophys. Res. Atmos. 1990, 95, 1515–1522. [Google Scholar] [CrossRef] Astraldi, M.; Gasparini, G.P. The seasonal characteristics of the circulation in the north Mediterranean basin and their relationship with the atmospheric-climatic conditions. J. Geophys. Res. Atmos. 1992, 97, 9531. [Google Scholar] [CrossRef] Sammari, C.; Millot, C.; Prieur, L. Aspects of the seasonal and mesoscale variabilities of the Northern Current in the western Mediterranean Sea inferred from the PROLIG-2 and PROS-6 experiments. Deep. Sea Res. Part I Oceanogr. Res. Pap. 1995, 42, 893–917. [Google Scholar] [CrossRef] Poulain, P.-M.; Gerin, R.; Rixen, M.; Zanasca, P.; Teixeira, J.; Griffa, A.; Molcard, A.; De Marte, M.; Pinardi, N. Aspects of the surface circulation in the Liguro-Provençal basin and Gulf of Lion as observed by satellite-tracked drifters (2007–2009). Boll. Di Geofis. Teor. Ed Appl. 2012, 53, 261–279. [Google Scholar] [CrossRef] Pinardi, N.; Arneri, E.; Crise, A.; Ravaioli, M.; Zavatarelli, M. The physical, sedimentary and ecological structure and variability of shelf areas in the Mediterranean Sea. In The Sea; Robinson, A.R., Brink, K., Eds.; Harvard University Press: Cambridge, MA, USA, 2006; pp. 1243–1330. [Google Scholar] Millot, C. Mesoscale and seasonal variabilities of the circulation in the western Mediterranean. Dyn. Atmos. Ocean. 1991, 15, 179–214. [Google Scholar] [CrossRef] Simoncelli, S.; Masina, S.; Axell, L.; Liu, Y.; Salon, S.; Cossarini, G.; Bertino, L.; Xie, J.; Samuelsen, A.; Levier, B.; et al. MyOcean Regional Reanalyses: Overview of Reanalyses Systems and Main Results. Mercator Ocean. J. 2016, 54, 43. [Google Scholar] Simoncelli, S.; Fratianni, C.; Pinardi, N.; Grandi, A.; Drudi, M.; Oddo, P.; Dobricic, S. Mediterranean Sea Physical Reanalysis (CMS MED-Physics) (Version 1) [Data Set]; Copernicus Marine Service (CMEMS): Ramonville-Saint-Agne, France, 2019. [Google Scholar] [CrossRef] Bouffard, J.; Vignudelli, S.; Cipollini, P.; Menard, Y. Exploiting the potential of an improved multimission altimetric data set over the coastal ocean. Geophys. Res. Lett. 2008, 35, L10601. [Google Scholar] [CrossRef] Ciuffardi, T.; Napolitano, E.; Iacono, R.; Reseghetti, F.; Raiteri, G.; Bordone, A. Analysis of surface circulation structures along a frequently repeated XBT transect crossing the Ligurian and Tyrrhenian Seas. Ocean. Dyn. 2016, 66, 767–783. [Google Scholar] [CrossRef] Sciascia, R.; Magaldi, M.G.; Vetrano, A. Current reversal and associated variability within the Corsica Channel: The 2004 case study. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2019, 144, 39–51. [Google Scholar] [CrossRef] Pinardi, N.; Masetti, E. Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: A review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 158, 153–173. [Google Scholar] [CrossRef] Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef] Bell, B.; Hersbach, H.; Simmons, A.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis: Preliminary extension to 1950. Q. J. R. Meteorol. Soc. 2021, 147, 4186–4227. [Google Scholar] [CrossRef] Soukissian, T.; Sotiriou, M.-A. Long-Term Variability of Wind Speed and Direction in the Mediterranean Basin. Wind 2022, 2, 513–534. [Google Scholar] [CrossRef] Chronis, T.; Papadopoulos, V.; Nikolopoulos, E.I. QuickSCAT observations of extreme wind events over the Mediterranean and Black Seas during 2000–2008. Int. J. Clim. 2011, 31, 2068–2077. [Google Scholar] [CrossRef] Zăinescu, F.; Anthony, E.; Vespremeanu-Stroe, A. River Jets versus Wave-Driven Longshore Currents at River Mouths. Front. Mar. Sci. 2021, 8, 1134. [Google Scholar] [CrossRef] Ohlmann, J.C.; White, P.F.; Sybrandy, A.L.; Niiler, P.P. GPS—Cellular Drifter Technology for Coastal Ocean Observing Systems. J. Atmos. Ocean. Technol. 2005, 22, 1301. [Google Scholar] [CrossRef] Duncan, E.M.; Davies, A.; Brooks, A.; Chowdhury, G.W.; Godley, B.J.; Jambeck, J.; Maddalene, T.; Napper, I.; Nelms, S.E.; Rackstraws, C.; et al. Message in a bottle: Open source technology to track the movement of plastic pollution. PLoS ONE 2020, 15, e0242459. [Google Scholar] [CrossRef] Dagestad, K.-F.; Röhrs, J.; Breivik, Ø.; Ådlandsvik, B. OpenDrift v1.0: A generic framework for trajectory modelling. Geosci. Model Dev. 2018, 11, 1405–1420. [Google Scholar] [CrossRef] Clementi, E.; Aydogdu, A.; Goglio, A.C.; Pistoia, J.; Escudier, R.; Drudi, M.; Grandi, A.; Mariani, A.; Lyubartsev, V.; Lecci, R.; et al. Mediterranean Sea Physical Analysis and Forecast (CMS MED-Currents, EAS6 system) (Version 1) Data set. Copernicus Marine Service (CMS). 2021. Available online: https://doi.org/10.25423/CMCC/MEDSEA_ANALYSISFORECAST_PHY_006_013_EAS6 (accessed on 10 January 2023). Umgiesser, G.; Ferrarin, C.; Cucco, A.; De Pascalis, F.; Bellafiore, D.; Ghezzo, M.; Bajo, M. Comparative hydrodynamics of 10 Mediterranean lagoons by means of numerical modeling. J. Geophys. Res. Ocean. 2014, 119, 2212–2226. [Google Scholar] [CrossRef] Bellafiore, D.; Umgiesser, G. Hydrodynamic coastal processes in the North Adriatic investigated with a 3D finite element model. Ocean. Dyn. 2010, 60, 255–273. [Google Scholar] [CrossRef] Ferrarin, C.; Roland, A.; Bajo, M.; Umgiesser, G.; Cucco, A.; Davolio, S.; Buzzi, A.; Malguzzi, P.; Drofa, O. Tide-surge-wave modelling and forecasting in the Mediterranean Sea with focus on the Italian coast. Ocean. Model. 2013, 61, 38–48. [Google Scholar] [CrossRef] Geuzaine, C.; Remacle, J.-F. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 2009, 79, 1309–1331. [Google Scholar] [CrossRef] Lindström, G.; Pers, C.; Rosberg, J.; Strömqvist, J.; Arheimer, B. Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol. Res. 2010, 41, 295–319. [Google Scholar] [CrossRef] Smagorinsky, J. General circulation experiments with the primitive equations. Mont. Weather. Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef] Burchard, H.; Petersen, O. Models of turbulence in the marine environment—A comparative study of two-equation turbulence models. J. Mar. Syst. 1999, 21, 29–53. [Google Scholar] [CrossRef] Dagestad, K.-F.; Röhrs, J. Prediction of ocean surface trajectories using satellite derived vs. modeled ocean currents. Remote. Sens. Environ. 2019, 223, 130–142. [Google Scholar] [CrossRef] Liu, Y.; Weisberg, R.H. Evaluation of trajectory modeling in different dynamic regions using normalized cumulative Lagrangian separation. J. Geophys. Res. Atmos. 2011, 116, 1–13. [Google Scholar] [CrossRef] De Dominicis, M.; Pinardi, N.; Zodiatis, G.; Lardner, R. MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting—Part 1: Theory. Geosci. Model Dev. 2013, 6, 1851–1869. [Google Scholar] [CrossRef] Chubarenko, I.; Bagaev, A.; Zobkov, M.; Esiukova, E. On some physical and dynamical properties of microplastic particles in marine environment. Mar. Pollut. Bull. 2016, 108, 105–112. [Google Scholar] [CrossRef] [PubMed] Aliani, S.; Griffa, A.; Molcard, A. Floating debris in the Ligurian Sea, north-western Mediterranean. Mar. Pollut. Bull. 2003, 46, 1142–1149. [Google Scholar] [CrossRef] [PubMed] Yoon, J.-H.; Kawano, S.; Igawa, S. Modeling of marine litter drift and beaching in the Japan Sea Mar. Pollut. Bull. 2010, 60, 448–463. [Google Scholar] [CrossRef] [PubMed] Schmidt, W.E.; Woodward, B.T.; Millikan, K.S.; Guza, R.T. A GPS-Tracked Surf Zone Drifter. J. Atmos. Ocean. Technol. 2003, 20, 1069–1075. [Google Scholar] [CrossRef] Johnson, D.; Stocker, R.; Head, R.; Imberger, J.; Pattiaratchi, C. A Compact, Low-Cost GPS Drifter for Use in the Oceanic Nearshore Zone, Lakes, and Estuaries. J. Atmos. Ocean. Technol. 2003, 20, 1880–1884. [Google Scholar] [CrossRef] Cadena, A.; Vera, S.; Moreira, M. A Low-Cost Lagrangian Drifter Based on Open-Source Hardware and Software Platform. In Proceedings of the 4th International Conference on Control, Automation and Robotics, Auckland, New Zealand, 20–23 April 2018; Available online: https://ieeexplore.ieee.org/document/8384673/authors#authors (accessed on 27 November 2022). Lavrova, O.Y.; Soloviev, D.M.; Strochkov, A.Y.; Nazirova, K.R.; Krayushkin, E.V.; Zhuk, E.V. The Use of Mini-Drifters in Coastal Current Measurements Conducted Concurrently with Satellite Imaging. Izv. Atmos. Ocean. Phys. 2020, 56, 1022–1033. [Google Scholar] [CrossRef] Critchell, K.; Grech, A.; Schlaefer, J.; Andutta, F.; Lambrechts, J.; Wolanski, E.; Hamann, M. Modelling the fate of marine debris along a complex shoreline: Lessons from the Great Barrier Reef. Estuar. Coast. Shelf Sci. 2015, 167, 414–426. [Google Scholar] [CrossRef] Suaria, G.; Aliani, S. Floating debris in the Mediterranean Sea. Mar. Pollut. Bull. 2014, 86, 494–504. [Google Scholar] [CrossRef] Suaria, G.; Avio, C.G.; Mineo, A.; Lattin, G.L.; Magaldi, M.G.; Belmonte, G.; Moore, C.J.; Regoli, F.; Aliani, S. The Mediterranean Plastic Soup: Synthetic polymers in Mediterranean surface waters. Sci. Rep. 2016, 6, 37551. [Google Scholar] [CrossRef] [PubMed] Hinojosa, I.A.; Rivadeneira, M.M.; Thiel, M. Temporal and spatial distribution of floating objects in coastal waters of central—Southern Chile and Patagonian fjords. Cont. Shelf. Res. 2011, 31, 172–186. [Google Scholar] [CrossRef] Nelms, S.; Duncan, E.M.; Broderick, A.; Galloway, T.S.; Godfrey, M.H.; Hamann, M.; Lindeque, P.; Godley, B.J. Plastic and marine turtles: A review and call for research. ICES J. Mar. Sci. 2016, 73, 165–181. [Google Scholar] [CrossRef] Schuyler, Q.; Wilcox, C.; Townsend, K.; Wedemeyer-Strombel, K.R.; Balazs, G.; van Sebill, E.; Hardesty, B.D. Risk analysis reveals global hotspots for marine debris ingestion by sea turtles. Glob Chang. Biol. 2015, 22, 567–576. [Google Scholar] [CrossRef] Hays, G.C.; Bailey, H.; Bograd, S.J.; Bowen, W.D.; Campagna, C.; Carmichael, R.H.; Casale, P.; Chiaradia, A.; Costa, D.P.; Cuevas, E.; et al. Translating Marine Animal Tracking Data into Conservation Policy and Management. Trends Ecol. Evol. 2019, 34, 459–473. [Google Scholar] [CrossRef] Ryabinin, V.; Barbière, J.; Haugan, P.; Kullenberg, G.; Smith, N.; McLean, C.; Troisi, A.; Fischer, A.; Aricò, S.; Aarup, T.; et al. The UN Decade of Ocean Science for Sustainable Development. Front. Mar. Sci. 2019, 6, 470. [Google Scholar] [CrossRef] Locritani, M.; Merlino, S.; Abbate, M. Assessing the citizen science approach as tool to increase awareness on the marine litter problem. Mar. Pollut. Bull. 2019, 140, 320–329. [Google Scholar] [CrossRef] Eagle, L.; Hamann, M.; Low, D.R. The role of social marketing, marine turtles and sustainable tourism in reducing plastic pollution. Mar. Pollut. Bull. 2016, 107, 324–332. [Google Scholar] [CrossRef] Hill, A.P.; Davies, A.; Prince, P.; Snaddon, J.L.; Doncaster, C.P.; Rogers, A. Leveraging conservation action with open-source hardware. Conserv. Lett. 2019, 12, e12661. [Google Scholar] [CrossRef]en_US
dc.description.obiettivoSpecifico7TM.Sviluppo e Trasferimento Tecnologicoen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn0746-9462en_US
dc.contributor.authorMerlino, Silvia-
dc.contributor.authorLocritani, Marina-
dc.contributor.authorGuarnieri, Antonio-
dc.contributor.authorDelrosso, Damiano-
dc.contributor.authorBianucci, Marco-
dc.contributor.authorPaterni, Marco-
dc.contributor.departmentCNR-ISMARen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen_US
dc.contributor.departmentCNR-ISMARen_US
dc.contributor.departmentCNR-IFCen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCNR-ISMAR-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptConsiglio Nazionale delle Ricerche, Istituto di Scienze Marine (ISMAR)-
crisitem.author.deptIstituto di Fisiologia Clinica del Consiglio Nazionale delle Ricerche, IFC-CNR-
crisitem.author.orcid0000-0002-4537-2903-
crisitem.author.orcid0000-0003-2827-5631-
crisitem.author.orcid0000-0001-8162-6571-
crisitem.author.orcid0000-0002-3646-9893-
crisitem.author.orcid0000-0002-0276-2813-
crisitem.author.orcid0000-0002-9799-7059-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Show simple item record

Page view(s)

170
checked on Mar 27, 2024

Download(s)

66
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric