Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/15867
Authors: D'Agostino, Nicola* 
Copley, A* 
Jackson, J* 
Koci, R* 
Hajrullai, A* 
Duni, Llambro* 
Kuka, Neki* 
Title: Active tectonics and fault evolution in the Western Balkans
Journal: Geophysical Journal International 
Series/Report no.: /231(2022)
Publisher: Oxford University Press - The Royal Astronomical Society
Issue Date: 17-Aug-2022
DOI: 10.1093/gji/ggac316
Abstract: The western Balkans occupy a region influenced by two major active tectonic processes: the collision between the Adriatic Region and the Dinarides in the west, and the extension of the Aegean Region and its surroundings as they move towards the Hellenic Trench. An understanding of the kinematics and dynamics of the western Balkans has significance for our understanding of continental tectonics in general, and is the object of this paper. The region is rich in observational data, with many well-studied earthquakes, good geodetic coverage by GNSS (Global Navigation Satellite System) and abundant exposure of active faulting and its associated geomorphology, especially within the Mesozoic carbonates that cover large sectors of the extensional areas. We first use such observations to establish the regional kinematic patterns, by which we mean a clarification of how active faulting achieves the motions observed in the deforming velocity field obtained from GNSS measurements. We then use geomorphological observations on the evolution of drainage systems to establish how kinematic and faulting patterns have changed and migrated during the Late Neogene-Quaternary. The kinematics, and its evolution, can then be used to infer characteristics of the dynamics, by which we mean the origin and effect of the forces that control the overall deformation. The principal influences are: (i) the distribution and evolution of gravitational potential energy (GPE) contrasts arising from crustal thickness variations and elevation, in particular the growth of topography by shortening in the Albanides–Hellenides mountain ranges and the high elevation of mainland Greece relative to the Mediterranean seafloor and (ii) the ability of the boundaries of the region, along the Adriatic coast and in the Hellenic Trench, to support the forces arising from those GPE contrasts. The evolution in space and time indicates an interaction between the anisotropic strength fabric of the upper crust associated with faulting, and the more distributed and smoother patterns of flow that are likely to characterize the ductile deformation of the lower, aseismic part of the lithosphere—both of which influence the deformation on the scale of 100–200 km. The persistent argument about whether continental deformation is best described by a continuum or by rigid-block motions is largely a matter of scale and particular location: both are influential in establishing the patterns we see.
Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
dagostino_etal_GJI2022.pdf66.92 MBAdobe PDFView/Open
Show full item record

Page view(s)

42
checked on Apr 13, 2024

Download(s)

8
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric