Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/15682
DC FieldValueLanguage
dc.date.accessioned2022-07-14T09:39:53Z-
dc.date.available2022-07-14T09:39:53Z-
dc.date.issued2022-07-04-
dc.identifier.urihttp://hdl.handle.net/2122/15682-
dc.description.abstractForest destruction by ‘a‘ ̄a lava flow is common. However, mechanical and thermal interactions between the invading lava and the invaded forest are poorly constrained. We complete mapping, thermal image and sample analyses of a channel-fed ‘a‘a ̄ lava flow system that invaded forest on the NE flank of Mt. Etna (Italy) in 2002. These lava flows destroyed 231,000 trees, only 2% of which are still visible as felled trunks on the levees or at the channel-levee contact. The remaining 98% were first felled by the flow front, with the trunks then buried by the flow. Rare tree molds can be found at the rubble levee base where trees were buried by avalanching hot breccia and then burnt through, with a time scale for total combustion being a few days. Protruding trunks fell away from the flow, if felled by blocks avalanching down the levee flank, or became aligned with the flow if falling onto the moving stream. Estimated cooling rates (0.1–5.5 ◦C km− 1) are normal for well-insulated ‘a‘a ̄ flow, suggesting no thermal interaction. We find the highest phenocryst concentrations (of 50–60%, above an expected value of 30–40%) in low velocity (<0.5 m s− 1) locations. These low velocity zones are also characterized by high trunk concentrations. Thus, the common factor behind crystal and trunk deposition is velocity. That is, when the lava slows down, crystal settling occurs and trunks are preferentially deposited. Thus, although we find no thermal or textural effects due to the presence of the forest, we do find mechanical and environmental in- teractions where the trees are consumed to become part of the flow.en_US
dc.description.sponsorshipThis research was financed by the Agence National de la Recherche through the project LAVA (Program: DS0902 2016; Project: ANR-16 CE39-0009). We very much thank Sean I. Peters and an anonymous reviewer for their extremely constructive advice and support. This is ANR-LAVA contribution no. 23 and Laboratory of Excellence ClerVolc contribution no. 552.en_US
dc.language.isoEnglishen_US
dc.publisher.nameElsevieren_US
dc.relation.ispartofJournal of Volcanologi and Geothermal Researchen_US
dc.relation.ispartofseries/429 (2022)en_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectChannelized ‘a‘ ̄a lava flowen_US
dc.subjectthermal imageryen_US
dc.subjectlava flowsen_US
dc.subject2002-03 eruptionen_US
dc.subjectforest destructionen_US
dc.subjecttree moldsen_US
dc.subjectEtna volcanoen_US
dc.subjectcooling ratesen_US
dc.subjectInteraction lava and treesen_US
dc.titleForest destruction by ‘a‘ā lava flow during Etna's 2002–03 eruption: Mechanical, thermal, and environmental interactionsen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber107621en_US
dc.subject.INGV04.08. Volcanologyen_US
dc.identifier.doi10.1016/j.jvolgeores.2022.107621en_US
dc.relation.referencesAndronico, D., Branca, S., Calvari, S., Burton, M., Caltabiano, T., Corsaro, R.A., Del Carlo, P., Garfì, G., Lodato, L., Miraglia, L., Mur`e, F., Neri, M., Pecora, E., Pompilio, M., Salerno, G., Spampinato, L., 2005. A multi-disciplinary study of the 2002–03 Etna eruption: insights into a complex plumbing system. Bull. Volcanol. 67 (4), 314–330. https://doi.org/10.1007/s00445-004-0372-8. Andronico, D., Cristaldi, A., Del Carlo, P., Taddeucci, J., 2009. Shifting styles of basaltic explosive activity during the 2002-03 eruption of Mt. Etna, Italy. J. Volcanol. Geotherm. Res. 180 (2–4), 110–122. https://doi.org/10.1016/j. jvolgeores.2008.07.026. Armienti, P., Pareschi, M.T., Innocenti, F., Pompilio, M., 1994. Effects of magma storage and ascent on the kinetics of crystal growth. Contrib. Mineral. Petrol. 115 (4), 402–414. https://doi.org/10.1007/BF00320974. Barreca, L., Coletta, V., Gentile, F., Marziliano, P.A., Scuderi, A., 2009. Struttura delle pinete di laricio dell’Etna: il caso della pineta Ragabo. In: Ciancio, O. (Ed.), Atti del Terzo Congresso Nazionale di Selvicoltura per il Miglioramento e la conservazione dei boschi italiani. Accademia Italiana di Scienze Forestali I, pp. 95–100. https://doi. org/10.4129/CNS2008.011. Taormina (ME) 16-19 ottobre 2008. Barreca, L., Marziliano, P.A., Menguzzato, G., Scuderi, A., 2010. Avifauna e struttura nella pineta Ragabo (Linguaglossa, CT). Forest@ 7, 223–233. http://www.sisef.it /forest@/. Bella, P., Gaa ́l, L., 2007. Tree mould caves within the framework of cave genetic classification. Nat. Conserv. 63, 7–11. Bertile, W., 1987. Des coul ́ees volcaniques a` Saint-Philippe (Mars 1986): gestion d’une catastrophe naturelle (Edition Co). Biren, J., Harris, A., Tuffen, H., Chevrel, M.O., Gurioli, L., Vlast ́elic, I., Schiavi, F., Benbakkar, M., Fonquernie, C., Calabro, L., 2020. Chemical, textural and thermal analyses of local interactions between lava flow and a tree – Case study From P ̄ahoa, Hawai’i. Front. Earth Sci. 8, 233. https://doi.org/10.3389/feart.2020.00233. Calvari, S., Cotteli, M., Neri, M., Pompilio, M., Scribano, V., 1994. The 1991-1993 Etna eruption: chornology and lava flow-field evolution. Acta Vulcanol. 4, 1–14. Carveni, P., Mele, G., Benfatto, S., Imposa, S., Puntillo, M.S., 2011. Lava trees and tree molds (“cannon stones”) of Mt. Etna, 633–638. https://doi.org/10.1007/s00445- 011-0446-3. Cashman, K.V., Thornber, C., Kauahikaua, J.P., 1999. Cooling and crystallization of lava in open channels, and the transition of p ̄ahoehoe lava to ‘a‘ ̄a. Bull. Volcanol. 61, 306–323. https://doi.org/10.1007/s004450050299. Chevrel, M.O., Harris, A.J.L., Ajas, A., Biren, J., Gurioli, L., Calabro`, L., 2019. Investigating physical and thermal interactions between lava and trees: the case of K ̄ılauea’s July 1974 flow. Bull. Volcanol. 81 (2), 1–6. https://doi.org/10.1007/ s00445-018-1263-8. 12 A. Harris et al. Clocchiatti, R., Condomines, M., Gu ́enot, N., Tanguy, J.-C., 2004. Magma changes at Mount Etna: the 2001 and 2002–2003 eruptions. Earth Planet. Sci. Lett. 226 (3), 397–414. https://doi.org/10.1016/j.epsl.2004.07.039. Corsaro, R.A., Miraglia, L., 2005. Dynamics of 2004–2005 Mt. Etna effusive eruption as inferred from petrologic monitoring. Geophys. Res. Lett. 32 (13) https://doi.org/ 10.1029/2005GL022347. Corsaro, R.A., Pompilio, M., 2004. Dynamics of Magmas at Mount Etna. In: Mt. Etna: Volcano Laboratory, pp. 91–110. https://doi.org/10.1029/143GM07. Crisp, J., Cashman, K.V., Bonini, J.A., Hougen, S.B., Pieri, D.C., 1994. Crystallization history of the 1984 Mauna Loa lava flow. J. Geophys. Res. 99 (B4), 7177–7198. https://doi.org/10.1029/93JB02973. Favalli, M., Fornaciai, A., Pareschi, M.T., 2009. LIDAR strip adjustment: application to volcanic areas. Geomorphology 111 (3–4), 123–135. https://doi.org/10.1016/j. geomorph.2009.04.010. Favalli, M., Fornaciai, A., Nannipieri, L., Harris, A., Calvari, S., Lormand, C., 2018. UAV- based remote sensing surveys of lava flow fields: a case study from Etna’s 1974 channel-fed lava flows. Bull. Volcanol. 80 (3), 29. https://doi.org/10.1007/s00445- 018-1192-6. Finch, R.H., 1931. Lava tree casts and tree molds [abs.]. Geol. Soc. Am. Bull. 42, 299. Gauthier, F., 1973. Field and laboratory studies of the rheology of Mount Etna lava. Philos. Trans. Royal Soc. London A: Math. Phys. Eng. Sci. 274 (1238), 83–98. Harris, A., 2013. Thermal Remote Sensing of Active Volcanoes: A User’s Manual. Cambridge University Press. https://doi.org/10.1017/CBO9781139029346. Harris, A.J.L., Allen, J.S., 2008. One-, two- and three-phase viscosity treatments for basaltic lava flows. J. Geophys. Res. 113, B09212. https://doi.org/10.1029/ 2007JB005035. Harris, A.J.L., Flynn, L.P., Matías, O., Rose, W.I., 2002. The thermal stealth flows of Santiaguito dome, Guatemala: Implications for the cooling and emplacement of dacitic block-lava flows. Bull. Geol. Soc. Am. 114 (5), 533–546. https://doi.org/ 10.1130/0016-7606(2002)114<0533:TTSFOS>2.0.CO;2. Harris, Andrew J.L., Dehn, J., Calvari, S., 2007. Lava effusion rate definition and measurement: a review. Bull. Volcanol. 70 (1), 1–22. https://doi.org/10.1007/ s00445-007-0120-y. Harris, A., Steffke, A., Calvari, S., Spampinato, L., 2011. Thirty years of satellite-derived lava discharge rates at Etna: Implications for steady volumetric output. J. Geophys. Res. Solid Earth 116 (8), 1–15. https://doi.org/10.1029/2011JB008237. Harris, A., Steffke, A., Calvari, S., Spampinato, L., 2012. Erratum: thirty years of satellite- derived lava discharge rates at Etna: implications for steady volumetric output (Journal of Geophysical Research B: Solid Earth 116 (B08204) DOI: 10.1029/ 2011JB008237). J. Geophys. Res. Solid Earth 117 (8), 5–6. https://doi.org/ 10.1029/2012JB009431. Higgins, M.D., 2000. Measurement of crystal size distributions. Am. Mineral. 85, 1105–1116. Houghton, B.F., Wilson, C.J.N., 1989. A vesicularity index for pyroclastic deposits. Bull. Volcanol. 51 (6), 451–462. https://doi.org/10.1007/BF01078811. Jeffreys, H., 1925. The flow of water in an inclined channel of rectangular section. Philos. Magasin, serie 6 (4), 293,793–807. Jones, T.J., Llewellin, E.W., Houghton, B.F., Brown, R.J., 2017. Proximal Lava Drainage Controls on Basaltic Fissure Eruption Dynamics, pp. 1–15. Keszthelyi, L., 1995. Measurements of the cooling at the base of p ̄ahoehoe flows. Geophys. Res. Lett. 22, 2195–2198. Kilburn, C.R.J., Guest, J.E., 1993. ‘A‘ ̄a lavas of Mount Etna, Sicily. In: Active Lava. UCL Press, London, pp. 73–106. Lipman, P.W., Banks, N.G., 1987. Aa flow dynamics, Mauna Loa 1984. US Geol. Surv. Prof. Pap. 1350, 1527–1567. Lockwood, J.P., Hazlett, R.W., 2010. Volcanoes Global Perspectives. Wiley-Blackwell. Lockwood, J.P., Williams, I.S., 1978. Lava trees and tree moulds as indicators of lava flow direction, 115 (November 1975), 69–74. Lockwood, J.P., Tilling, R.I., Holcomb, R.T., Klein, F., Okamura, A.T., Peterson, D.W., 1999. Magma Migration and Resupply during the 1974 Summit Eruptions of K ̄ılauea Volcano, Hawai’i. In: U.S. Geological Survey Professional Paper, 1613, p. 37. Lormand, C., Harris, A.J.L., Chevrel, M.O., Calvari, S., Gurioli, L., Favalli, M., Fornaciai, A., Nannipieri, L., 2020. The 1974 west flank eruption of Mount Etna: a Journal of Volcanology and Geothermal Research 429 (2022) 107621 data-driven model for a low elevation effusive event. Front. Earth Sci. xx https://doi. org/10.3389/feart.2020.590411. Macdonald, G.A., Abbott, A.T., Peterson, F.L., 1983. Volcanoes and the Sea. University of Hawaii Press. Marchese, E.P., 1991. Piante e fiori dell’Etna. Sellerio, Palermo, p. 198. Moore, H.J., Kachadoorian, R., 1980. Estimates of lava-flow velocities using lava trees. Rep. Plan. Geol. Prog. 1979–1980, 201–203. Moore, J.G., Richter, D.H., 1962. Lava tree molds of the september 1961 eruption, K ̄ılauea volcano, Hawaii. Geol. Soc. Am. Bull. 73, 1153–1158. Morgan, D.J., Jerram, D.A., 2006. On estimating crystal shape for crystal size distribution analysis. J. Volcanol. Geotherm. Res. 154 (1–2), 1–7. https://doi.org/10.1016/j. jvolgeores.2005.09.016. Neri, M., Acocella, V., Behncke, B., Maiolino, V., Ursino, A., Velardita, R., 2005. Contrasting triggering mechanisms of the 2001 and 2002-2003 eruptions of Mount Etna (Italy). J. Volcanol. Geotherm. Res. 144 (1-4 SPEC. ISS), 235–255. https://doi. org/10.1016/j.jvolgeores.2004.11.025. Parcheta, C.E., Houghton, B.F., Swanson, D.A., 2012. Hawaiian fissure fountains 1: Decoding deposits-episode 1 of the 1969-1974 Mauna Ulu eruption. Bull. Volcanol. 74 (7), 1729–1743. https://doi.org/10.1007/s00445-012-0621-1. Pinkerton, H., Sparks, R.S.J., 1978. Field measurements of the rheology of lava. Nature 276, 383–385. Pioli, L., Pistolesi, M., Rosi, M., 2014. Transient explosions at open-vent volcanoes: the case of Stromboli (Italy). Geology 42 (10), 863–866. https://doi.org/10.1130/ G35844.1. Rh ́ety, M., Harris, A.J.L., Villeneuve, N., Gurioli, L., M ́edard, E., Chevrel, M.O., Bach`elery, P., 2017. A comparison of cooling-limited and volume-limited flow systems: Examples from channels in the Piton de la Fournaise April 2007 lava-flow field. Geochem. Geophys. Geosyst. 18 (9), 3270–3291. https://doi.org/10.1002/ 2017GC006839. Riker, J.M., Cashman, K.V., Kauahikaua, J.P., Montierth, C.M., 2009. The length of channelised lava flows: insight from the 1859 eruption of Mauna Loa Volcano, Hawaii. J. Volcanol. Geotherm. Res. 183, 139–156. Robert, B., Harris, A., Gurioli, G., Medard, E., Sehlke, A., Whittington, A., 2014. Textural and rheological evolution of basalt flowing down a lava channel. Bull. Volcanol. 76, 824. Robinson, J.M., 1991. Fire from space: global fire evaluation using infrared remote sensing. Int. J. Remote Sens. 12, 3–24. https://doi.org/10.1080/ 01431169108929628. Rowland, S.K., Walker, G.P.L., 1987. Toothpaste lava: Characteristics and origin of a lava structural type transitional between p ̄ahoehoe and aa. Bull. Volcanol. 49 (4), 631–641. https://doi.org/10.1007/BF01079968. Shea, T., Houghton, B.F., Gurioli, L., Cashman, K.V., Hammer, J.E., Hobden, B.J., 2010. Textural studies of vesicles in volcanic rocks: an integrated methodology. J. Volcanol. Geotherm. Res. 190 (3–4), 271–289. https://doi.org/10.1016/j. jvolgeores.2009.12.003. Soule, S.A., Cashman, K.V., Kauahikaua, J.P., 2004. Examining flow emplacement through the surface morphology of three rapidly emplaced, solidified lava flows, K ̄ılauea Volcano, Hawai’i. Bull. Volcanol. 66 (1), 1–14. https://doi.org/10.1007/ s00445-003-0291-0. Tanguy, J., Tazieff, H., Cristofolini, R., 1973. The 1971 etna eruption: petrography of the lavas. Philos. Trans. Royal Soc. London. Series A, Math. Phys. Sci. 274 (1238), 45–53. http://www.jstor.org/stable/74329. Testi, A., 2003. Alberi d’Italia. Giunti Editore, Firenze-Milano, p. 383. Thivet, S., Gurioli, L., Di Muro, A., 2020. Basaltic dyke eruptions at Piton de La Fournaise: characterization of the eruptive products with implications for reservoir conditions, conduit processes and eruptive dynamics. Contrib. Mineral. Petrol. 175, 26. https://doi.org/10.1007/s00410-020-1664-5. Vona, A., Romano, C., Dingwell, D.B., Giordano, D., 2011. The rheology of crystal- bearing basaltic magmas from Stromboli and Etna. Geochim. Cosmochim. Acta 75, 3214–3236. Walker, G.P.L., 1967. Thickness and Viscosity of Etnean Lavas. Nature 213 (5075), 484–485. https://doi.org/10.1038/213484a0. Walker, G.P.L., 1993. Basaltic-volcano systems. Geol. Soc. Lond., Spec. Publ. 76 (1), 3–38. https://doi.org/10.1144/GSL.SP.1993.076.01.01.en_US
dc.description.obiettivoSpecifico6V. Pericolosità vulcanica e contributi alla stima del rischioen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn0377-0273en_US
dc.contributor.authorHarris, Andrew-
dc.contributor.authorMannini, Stefano-
dc.contributor.authorCalabrò, Laura-
dc.contributor.authorCalvari, Sonia-
dc.contributor.authorGurioli, Lucia-
dc.contributor.authorChevrel, Magdalena Oryaëlle-
dc.contributor.authorFavalli, Massimiliano-
dc.contributor.authorVilleneuve, Nicolas-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptUniversit e Clermont Auvergne, CNRS, OPGC, Laboratoire Magmas et Volcans, 63000 Clermont - Ferrand, France-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.orcid0000-0002-5946-530X-
crisitem.author.orcid0000-0001-8189-5499-
crisitem.author.orcid0000-0002-5066-5153-
crisitem.author.orcid0000-0003-1201-5448-
crisitem.author.orcid0000-0002-7338-6069-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Harris et al 2022-Text clean.pdf489.32 kBAdobe PDFView/Open
Harris et al.pdfRestricted Paper5.75 MBAdobe PDFView/Open
Show simple item record

Page view(s)

167
checked on Apr 24, 2024

Download(s)

78
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric