Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/15672
DC FieldValueLanguage
dc.date.accessioned2022-06-30T13:26:45Z-
dc.date.available2022-06-30T13:26:45Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/2122/15672-
dc.description.abstractA full review of the 79 CE Plinian eruption of Vesuvius is presented through a multidisciplinary approach, exploiting the integration of historical, stratigraphic, sedimentological, petrological, geophysical, paleoclimatic, and modelling studies dedicated to this famous and devastating natural event. All studies have critically been reviewed and integrated with original data, spanning from proximal to ultradistal findings of the 79 CE eruption products throughout the Mediterranean. The work not only combines different investigation approaches (stratigraphic, petrological, geophysical, modelling), but also follows temporally the 79 CE eruptive and depo sitional events, from the magma chamber to the most distal tephras. This has allowed us first to compile a full database of all findings of those deposits, then to relate the products (the deposits) to the genetic thermo mechanical processes (the eruption), and lastly to better assess both the local and regional impacts of the 79 CE eruption in the environment. This information leads to a number of open issues (e.g., regional environmental impact vs. local pyroclastic current impact) that are worthy of further investigations, although the 79 CE eruption of Vesuvius is one of the best studied eruptions in volcanology. The structure of the work follows three macro-categories, the historical aspects, the products, and the processes of the 79 CE eruption. For each investigation approach (from stratigraphy to modelling), all dedicated studies and original data are discussed. The open issues are then synthesized in the discussion under a global view of Plinian eruptions, from the magma setting to its dispersion as pyroclasts flowing on the surface vs. falling from the volcanic plume. In this way, a lesson from the past, in particular from the well-studied 79 CE eruption of Vesuvius, will be of help for a better synchronization of processes and products in future developments. Lastly, various aspects for volcanic hazard assessment of Plinian eruptions are highlighted from the tephra distribution and modelling points of view, as these large natural phenomena can have a larger impact than previously thought, also at other active volcanoes.en_US
dc.language.isoEnglishen_US
dc.publisher.nameElsevieren_US
dc.relation.ispartofEarth-science Reviewsen_US
dc.relation.ispartofseries/231(2022)en_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subject79 CE eruptionen_US
dc.subjectVesuviusen_US
dc.subjectPlinian eruptionen_US
dc.subjectPompeiien_US
dc.subjectMultidisciplinary approachen_US
dc.subjectPyroclastic successionen_US
dc.subjectPyroclastic currentsen_US
dc.subject79 CE tephra dispersalen_US
dc.titleThe 79 CE eruption of Vesuvius: A lesson from the past and the need of a multidisciplinary approach for developments in volcanologyen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber104072en_US
dc.identifier.doi10.1016/j.earscirev.2022.104072en_US
dc.relation.referencesAgustin-Flores, J., N´emeth, K., Cronin, S.J., Lindsay, J.M., Kereszturi, G., Brand, B.D., Smith, I.E.M., 2014. Phreatomagmatic eruptions through unconsolidated coastal plain sequences, Maungataketake, Auckland Volcanic Field (New Zealand). J. Volcanol. Geotherm. Res. 276, 46–63. Aldrete, G.S., 2007. Flood of the Tiber in Ancient Roma, Baltimore. Aubry, T.J., Cerminara, M., Jellinek, A.M., 2019. Impacts of climate change on volcanic stratospheric injections: comparison of 1-D and 3-D plume model projections. Geophys. Res. Lett. 2019GL083975. Anderson, P.W.S., 2014. Pompeii. FilmDistrict, Constantin Film Produktion, Don Carmody Productions. Impact Pictures. Arrighi, S., et al., 2001. Violent strombolian and subplinian eruptions at Vesuvius during post-1631 activity. Bull. Volcanol. 63, 126–150. Aubry, T.J., et al., 2021. The Independent Volcanic Eruption Source Parameter Archive (IVESPA, version 1.0): a new observational database to support explosive eruptive column model validation and development. J. Volcanol. Geotherm. Res. 417. Auger, E., Gasparini, P., Virieux, J., Zollo, A., 2001. Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science (80) 294, 1510–1512. https://doi.org/ 10.1126/SCIENCE.1064893. Avvisati, C., 2018. Il Mattino, Giovedì 18 Ottobre 2018. Bagheri, G.H., Bonadonna, C., Manzella, I., Vonlanthen, P., 2015. On the characterization of size and shape of irregular particles. Powder Technol. 270, 141–153. Baker, A., Hellstrom, J.C., Kelly, B.F.J., Mariethoz, G., Trouet, V., 2015. A composite annual-resolution stalagmite record of North Atlantic climate over the last three Millennia. Sci. Rep. 5, 10307. Balachandar, S., Eaton, J.K., 2010. Turbulent Dispersed Multiphase Flow. Annu. Rev. Fluid Mech. 42, 111–133. Balcone-Boissard, H., Villemant, B., Boudon, G., Michel, A., 2008. Non-volatile vs volatile behaviours of halogens during the AD 79 plinian eruption of Mt. Vesuvius. Earth Planet. Sci. Lett. 269, 66–79. Barbante, C., Kehrwald, N.M., Marianelli, P., Vinther, B.M., Steffensen, J.P., Cozzi, G., Hammer, C.U., Clausen, H.B., Siggaard-Andersen, M.-L., 2013. Greenland ice core evidence of the 79 AD Vesuvius eruption. Clim. Past 9, 1221–1232. Barberi, F., Bizouard, H., Clocchiatti, R., Metrich, N., Santacroce, R., Sbrana, A., 1981. The somma-vesuvius magma chamber: a petrological and volcanological approach. Bull. Volcanol. 1981 443 44, 295–315. https://doi.org/10.1007/BF02600566. Barberi, F., Cioni, R., Rosi, M., Santacroce, R., Sbrana, A., Vecci, R., 1989. Magmatic and phreatomagmatic phases in explosive eruptions of Vesuvius as deduced by grain-size and compositional analysis of pyroclastic deposits. J. Volcanol. Geotherm. Res. 38, 287–307. Barberi, F., Macedonio, G., Pareschi, M.T., Santacroce, R., 1990. Mapping the tephra fallout risk: an example from Vesuvius, Italy. Nature 344 (6262), 142–144. https:// doi.org/10.1038/344142a0. Baxter, P.J., Neri, A., Todesco, M., 1998. Physical modelling and human survival in pyroclastic flows. Nat. Hazards 17, 163–176. Biggs, J., Ebmeier, S.K., Aspinall, W.P., Lu, Z., Pritchard, M.E., Sparks, R.S.J., Mather, T. A., 2014. Global link between deformation and volcanic eruption quantified by satellite imagery. Nat. Commun. https://doi.org/10.1038/ncomms4471. Bignami, C., Chini, M., Amici, S., Trasatti, E., 2020. Synergic use of multi-sensor satellite data for volcanic hazards monitoring: the fogo (Cape Verde) 2014–2015 effusive eruption. Front. Earth Sci. 8, 22. https://doi.org/10.3389/feart.2020.00022. Bini, M., Zanchetta, G., Perșoiu, A., Cartier, R., Catala, ` A., Cacho, I., Dean, J.R., Di Rita, F., Drysdale, R.N., Finn`e, M., Isola, I., Jalali, B., Lirer, F., Magri, D., Masi, A., Marks, L., Mercuri, A.M., Peyron, O., Sadori, L., Sicre, M.A., Welc, F., Zielhofer, Brisset E., 2019. The 4.2 ka BP event in the mediterranean region: an overview. Clim. Past 15, 555–577. Bini, M., Zanchetta, G., Regattieri, E., Isola, I., Drysdale, R.N., Fabiani, F., Genovesi, S., Hellstrom, J.C., 2020. Hydrological changes during the Roman Climatic Optimum in Northern Tuscany (Central Italy) as evidenced by speleothem records and archeological data. J. Quat. Sci. 35, 791–802. https://doi.org/10.1002/jqs.3224. Bonasia, V., Del Pezzo, E., Pingue, F., Scandone, R., Scarpa, R., 1985. Eruptive history, seismic activity and ground deformations at Mt. Vesuvius, Italy. Ann. Geophys. 3, 395–406. Borgia, A., Tizzani, P., Solaro, G., Manzo, M., Casu, F., Luongo, G., Pepe, A., Berardino, P., Fornaro, G., Sansosti, E., Ricciardi, G.P., Fusi, N., Di Donna, G., Lanari, R., 2005. Volcanic spreading of Vesuvius, a new paradigm for interpreting its volcanic activity. Geophys. Res. Lett. 32, 1–4. https://doi.org/10.1029/ 2004GL022155. Braccini, G.C., 1632. Dell’incendio fattosi nel Vesuvio a XVI di Dicembre MDCXXXI, Napoli, Secondino Roncagliolo. Brosch, E., et al., 2021. Destructiveness of pyroclastic surges controlled by turbulent fluctuations. Nat. Commun. 12, 7306. Bryan, S.E., Cas, R.A.F., Martí, J., 2000. The 0.57 Ma plinian eruption of the Granadilla Member, Tenerife (Canary Islands): an example of complexity in eruption dynamics and evolution. J. Volcanol. Geotherm. Res. 103, 209–238. Büntgen, U., Myglan, V.S., Ljungqvist, F.C., McCormick, M., Di Cosmo, N., Sigl, M., Jungclaus, J., Wagner, S., Krusic, P.J., Esper, J., Kaplan, J.O., de Vaan, M.A.C., Luterbacher, J., Wacker, L., Tegel, W., Kirdyanov, A.V., 2016. Cooling and societal change during the late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 9, 231–237. Cagnat, R., Feignon, J.G., Besnier, M., 1927. Ann´ee epigraphique, 0096. http://db.edcs. eu/epigr/epi_einzel.php?s_sprache=it&p_belegstelle=AE+1927,+00096&r_sortie rung=Belegstelle. Calusi, B., Andronico, D., Pecora, E., Biale, E., Cerminara, M., 2020. PyTirCam-1.0: a python model to manage thermal infrared camera data. Remote Sens. 12, 4056. Cao, Z., Patra, A., Bursik, M., Pitman, E.B., Jones, M., 2017. Plume-SPH 1.0: a three dimensional, dusty-gas volcanic plume model based on smoothed particle hydrodynamics. Geosci. Model Dev. Discuss. 1–37. Cao, Z., Bursik, M., Yang, Q., Patra, A., 2021. Simulating the transport and dispersal of volcanic ash clouds with initial conditions created by a 3D plume model. Front. Earth Sci. 9, 1–18. Carey, S., Sigurdsson, H., 1987. Temporal variations in column height and magma discharge rate during the 79 A.D. eruption of Vesuvius. Geol. Soc. Am. Bull. 99, 303–314. Caricchi, C., Vona, A., Corrado, S., Giordano, G., Romano, C., 2014. 79 AD Vesuvius PDC deposits’ temperatures inferred from optical analysis on woods charred in-situ in the Villa Dei Papiri at Herculaneum (Italy). J. Volcanol. Geotherm. Res. 289, 14–25. Cas, R.A.F., Wright, J.V., 1987. Volcanic successions: Modern and Ancient. Chapman & Hall, p. 528. Cassano, E., La Torre, P., 1987. Geophysics, in: Santacroce, R. (Ed.), Somma-Vesuvius. Quaderni de “La Ricerca Scientifica”, CNR, Roma, pp. 175–195. Cassio, Dione, 2000. Storia romana LXVI, 21–24. Testo Greco a fronte, vol. 7. Libri 64-67. Ed. BUR. Cella, F., Fedi, M., Florio, G., Grimaldi, M., Rapolla, A., 2007. Shallow Structure of the Somma-Vesuvius Volcano from 3D Inversion of Gravity Data. https://doi.org/ 10.1016/j.jvolgeores.2006.12.013. Cerminara, M., Esposti Ongaro, T., Valade, S., Harris, A.J.L., 2015. Volcanic plume vent conditions retrieved from infrared images: a forward and inverse modeling approach. J. Volcanol. Geotherm. Res. 300, 129–147. Cerminara, M., Esposti Ongaro, T., Berselli, L.C., 2016a. ASHEE-1.0: a compressible, equilibrium–Eulerian model for volcanic ash plumes. Geosci. Model Dev. 9, 697–730. Cerminara, M., Esposti Ongaro, T., Neri, A., 2016b. Large eddy simulation of gas-particle kinematic decoupling and turbulent entrainment in volcanic plumes. J. Volcanol. Geotherm. Res. 326, 143–171. Cerminara, M., Brosch, E., Lube, G., 2021. A theoretical framework and the experimental dataset for benchmarking numerical models of dilute pyroclastic density currents. ArXiv 2106.14057, 1–17. Cini Castagnoli, G., Bonino, G., Caprioglio, F., Provenzale, A., Serio, M., Guang-Mei, Z., 1990. The carbonate profile of two recent Ionian Sea cores: evidence that the sedimentation rate is constant over the last millennia. Geophys. Res. Lett. 17, 1937–1940. Cinque, A., Robustelli, G., 2009. Alluvial and coastal hazards caused by long-range effects of Plinian eruptions: the case of the Lattari Mts. After the AD 79 eruption of Vesuvius. Geol. Soc. Lond. Spec. Publ. 322, 155–171. Cioni, R., 2000. Volatile content and degassing processes in the AD 79 magma chamber at Vesuvius (Italy). Contrib. Mineral. Petrol. 140, 40–54. Cioni, R., Marianelli, P., Sbrana, A., 1990. L’eruzione del 79 d.C.: stratigrafia dei depositi ed impatto sugli insediamenti romani nel settore orientale e meridionale del Somma Vesuvio. Rivista di Studi Pompeiani IV, pp. 179–198. Cioni, R., Marianelli, P., Sbrana, A., 1992. Dynamics of the A.D. 79 eruption: stratigraphic, sedimentological and geochemical data on the successions from the Somma-Vesuvius southern and eastern sectors. Acta Vulcanol. 2, 109–123. Cioni, R., Civetta, L., Marianelli, P., Metrich, N., Santacroce, R., Sbrana, A., 1995. Compositional layering and syneruptive mixing of a periodically refilled shallow magma chamber: the AD 79 Plinian eruption of Vesuvius. J. Petrol. 36, 739–776. Cioni, R., Gurioli, L., Sbrana, A., Vougioukalakis, G., 2000. Precursory phenomena and destructive events related to the late Bronze Age Minoan (Thera, Greece) and 79 AD (Vesuvius, Italy) Plinian eruptions: Inferences from the stratigraphy in the archaeological areas. Geol. Soc. Spec. Publ. 171, 123–141. Cioni, R., Longo, A., Macedonio, G., Santacroce, R., Sbrana, A., Sulpizio, R., Andronico, D., 2003. Assessing pyroclastic fall hazard through field data and numerical simulations: example from Vesuvius. J. Geophys. Res. 108, B22063. Cioni, R., Gurioli, L., Lanza, R., Zanella, E., 2004. Temperatures of the AD 79 pyroclastic density current deposits (Vesuvius, Italy). J. Geophys. Res. 109, 1–18. https://doi. org/10.1029/2002JB002251. Cioni, R., Pistolesi, M., Rosi, M., 2015. Plinian and Subplinian Eruptions. In: Encyclopedia of Volcanoes, 2nd Ed. Elsevier Science Publishing. Cioni, R., Tadini, A., Gurioli, L., Bertagnini, A., Mulas, M., Bevilacqua, A., Neri, A., 2020. Estimating eruptive parameters and related uncertainties for pyroclastic density currents deposits: worked examples from Somma-Vesuvius (Italy). Bull. Volcanol. 82, 65. https://doi.org/10.1007/s00445-020-01402-7. Civetta, L., Galati, R., Santacroce, R., 1991. Magma mixing and convective compositional layering within the Vesuvius magma chamber. Bull. Volcanol. 1991 534 53, 287–300. https://doi.org/10.1007/BF00414525. Corradini, S., Spinetti, C., Carboni, E., Tirelli, C., Buongiorno, M.F., Pugnaghi, S., Gangale, G., 2008. Mt. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging Spectroradiometer measurements. J. Appl. Remote. Sens. 2, 023550 https://doi.org/10.1117/1.3046674. Corradini, S., Guerrieri, L., Lombardo, V., Merucci, L., Musacchio, M., Prestifilippo, M., Scollo, S., Silvestri, M., Spata, G., Stelitano, D., 2018. Proximal monitoring of the 2011-2015 Etna lava fountains using MSG-SEVIRI data. Geosci. Special Issue on Volcanic Plumes: Impacts on the Atmosphere and Insights into Volcanic Processes 8, 140. https://doi.org/10.3390/geosciences8040140. Corradini, S., Guerrieri, L., Stelitano, D., Salerno, G., Scollo, S., Merucci, L., Prestifilippo, M., Musacchio, M., Silvestri, M., Lombardo, V., Caltabiano, T., 2020. Near real-time monitoring of the Christmas 2018 etna eruption using SEVIRI and products validation. Remote Sens. 12, 1336. https://doi.org/10.3390/rs12081336. Cosentino, C., Molisso, F., Scopelliti, G., Caruso, A., Insinga, D., Lubritto, C., Pepe, F., Sacchi, M., 2017. Benthic foraminifera as indicators of relative sea-level fluctuations: Paleoenvironmental and paleoclimatic reconstruction of a Holocene marine succession (Calabria, South-Eastern Tyrrhenian Sea). Quat. Int. 439, 79–101. Costa, A., et al., 2016. Results of the eruptive column model inter-comparison study. J. Volcanol. Geotherm. Res. 326, 2–25. Costa, A., Suzuki, Y.J., Koyaguchi, T., 2018. Understanding the plume dynamics of explosive super-eruptions. Nat. Commun. 9. Crocitti, M., Sulpizio, R., Insinga, D., De Rosa, R., Donato, P., Iorio, M., Zanchetta, G., Barca, D., Lubritto, C., 2018. On ash dispersal from moderately explosive volcanic eruptions: examples from Holocene and Late Pleistocene eruptions of Italian volcanoes. J. Volcanol. Geotherm. Res. 385, 198–221. Dartevelle, S., et al., 2002. Origin of the Mount Pinatubo climactic eruption cloud: implications for volcanic hazards and atmospheric impacts. Geology 30, 663–666. D’Auria, L., Massa, B., De Matteo, A., 2014. The stress field beneath a quiescent stratovolcano: the case of Mount Vesuvius. J. Geophys. Res. Solid Earth 119, 1181–1199. https://doi.org/10.1002/2013JB010792. De Gori, P., Cimini, G.B., Chiarabba, C., De Natale, G., Troise, C., Deschamps, A., 2001. Teleseismic tomography of the Campanian volcanic area and surrounding Apenninic belt. J. Volcanol. Geotherm. Res. 109, 55–75. https://doi.org/10.1016/S0377-0273 (00)00304-8. De Natale, G., Petrazzuoli, S.M., Troise, C., Pingue, F., Capuano, P., 2000. Internal stress field at Mount Vesuvius: a model for background seismicity at a central volcano. J. Geophys. Res. Solid Earth 105, 16207–16214. https://doi.org/10.1029/ 2000jb900031. De Natale, G., Troise, C., Trigila, R., Dolfi, D., Chiarabba, C., 2004. Seismicity and 3-D substructure at Somma-Vesuvius volcano: evidence for magma quenching. Earth Planet. Sci. Lett. 221, 181–196. https://doi.org/10.1016/S0012-821X(04)00093-7. De Natale, G., Troise, C., Pingue, F., Mastrolorenzo, G., Pappalardo, L., 2006. The Somma-Vesuvius volcano (Southern Italy): Structure, dynamics and hazard evaluation. Earth-Sci. Rev. 74, 73–111. https://doi.org/10.1016/j. earscirev.2005.08.001. Degruyter, W., Bonadonna, C., 2013. Impact of wind on the condition for column collapse of volcanic plumes. Earth Planet. Sci. Lett. 377-378, 218–226. Dellino, P., Dioguardi, F., Isaia, R., et al., 2021. The impact of pyroclastic density currents duration on humans: the case of the AD 79 eruption of Vesuvius. Sci. Rep. 11, 4959. https://doi.org/10.1038/s41598-021-84456-7. Dermody, B.J., Boer, H.J., Bierkens, M.F.P., Weber, S.L., Wassen, M.J., Dekker, S.C., 2012. A seesow in Mediterranean precipitation during the Roman Period linked to millennial-scale changes in the North Atlantic. Clim. Past 8, 637–651. Devenish, B.J., Cerminara, M., 2018. The transition from Eruption Column to Umbrella Cloud. J. Geophys. Res. Solid Earth 123, 2018JB015841. Di Donato, V., Ruello, M.R., Liuzza, V., Carsana, V., Giampaola, D., Di Vito, M.A., Morhange, C., Cinque, A., Ermolli, E.R., 2018. Development and decline of the ancient harbor of Neapolis. Geoarchaeology 33, 1–16. Di Donato, V., Insinga, D.D., Iorio, M., Molisso, F., Rumolo, P., Cardines, C., Passaro, S., 2019. The palaeoclimatic and palaeoceanographic history of the Gulf of Taranto (Mediterranean Sea) in the last 15 ky. Glob. Planet. Chang. 172, 278–297. Di Stefano, R., Chiarabba, C., 2002. Active source tomography at Mt. Vesuvius: Constraints for the magmatic system. J. Geophys. Res. Solid Earth 107, ESE 4-1. https://doi.org/10.1029/2001JB000792. Di Vito, M.A., Zanella, E., Gurioli, L., Lanza, R., Sulpizio, R., Bishop, J., Tema, E., Boenzi, G., Laforgia, E., 2009. The Afragola settlement near Vesuvius, Italy: the destruction and abandonment of a Bronze Age village revealed by archeology, volcanology and rock-magnetism. Earth Planet. Sci. Lett. 277, 408–421. Dobran, F., Neri, A., Macedonio, G., 1993. Numerical simulation of collapsing volcanic columns. J. Geophys. Res. 98 (B3), 4231–4259. https://doi.org/10.1029/ 92JB02409. Dobran, F., Neri, A., Todesco, M., 1994. Assessing the pyroclastic flow hazard at Vesuvius. Nature 367 (6463), 551–554. https://doi.org/10.1038/367551a0. Doronzo, D.M., 2012. Two new end members of pyroclastic density currents: Forced convection-dominated and inertia-dominated. J. Volcanol. Geotherm. Res. 219-220, 87–91. Doronzo, D.M., Dellino, P., 2011. Interaction between pyroclastic density currents and buildings: Numerical simulation and first experiments. Earth Planet. Sci. Lett. 310, 286–292. Doronzo, D.M., de Tullio, M.D., Dellino, P., Pascazio, G., 2011. Numerical simulation of pyroclastic density currents using locally refined Cartesian grids. Comput. Fluids 44, 56–67. Doronzo, D.M., Martí, J., Sulpizio, R., Dellino, P., 2012. Aerodynamics of stratovolcanoes during multiphase processes. J. Geophys. Res. 117, B01207. Doronzo, D.M., Giordano, G., Palladino, D.M., 2022. Energy facies: a global view of pyroclastic currents from vent to deposit. Terra Nova 34, 1–11. Druitt, T., Calder, E.S., Cole, P.D., Hoblitt, R.P., Loughlin, S.C., Norton, G.E., Ritchie, L.J., Sparks, R.S.J., Voight, B., 2002. Small-volume, highly mobile pyroclastic flows formed by rapid sedimentation from pyroclastic surges at Soufri`ere Hills Volcano, Montserrat: An important volcanic hazard. In: Druitt, T., Kokelaar, P. (Eds.), The Eruption of Soufri`ere Hills Volcano, Montserrat, from 1995 to 1999. Geological Society, London, Memoirs, vol. 21, pp. 263–279. Dufek, J., Bergantz, G.W., 2007. Suspended load and bed-load transport of particle-laden gravity currents: the role of particle–bed interaction. Theor. Comput. Fluid Dyn. 21, 119–145. Dürig, T., Gudmundsson, M.T., Karmann, S., Zimanowski, B., Dellino, P., Rietze, M., Büttner, R., 2015. Mass eruption rates in pulsating eruptions estimated from video analysis of the gas thrust buoyancy transition—a case study of the 2010 eruption of Eyjafjallajokull, ¨ Iceland. Earth Planets Space 67, 180. Esposti Ongaro, T., Neri, A., Menconi, G., de Michieli Vitturi, M., Marianelli, P., Cavazzoni, C., Erbacci, G., Baxter, P.J., 2008. Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius. JVGR 178, 378–396. https://doi.org/10.1016/j.jvolgeores.2008.06.036. Esposti Ongaro, T., Cerminara, M., Charbonnier, S.J., Lube, G., Valentine, G.A., 2020. A framework for validation and benchmarking of pyroclastic current models. Bull. Volcanol. 82. Esposti, Ongaro T., Neri, A., Todesco, M., Macedonio, G., 2002. Pyroclastic flow hazard assessment at Vesuvius (Italy) by using numerical modeling. II. Analysis of flow variables. Bull. Volcanol. 64, 178–191. Esposti, Ongaro T., Cavazzoni, C., Erbacci, G., Neri, A., Salvetti, M.V., 2007. A parallel multiphase flow code for the 3D simulation of volcanic explosive eruptions. Parallel Comput. 33, 541–560. https://doi.org/10.1016/j.parco.2007.04.003. Ferry, J., Balachandar, S., 2001. A fast Eulerian method for disperse two-phase flow. Int. J. Multiphase Flow 27, 1199–1226. Filomarino, A., 1797. Gabinetto Vesuviano del Duca della Torre (III ed.). Talani, Napoli. Folch, A., Costa, A., Macedonio, G., 2015. FPLUME-1.0: an integrated volcanic plume model accounting for ash aggregation. Geosci. Model Dev. Discuss. 8, 8009–8062. Fisher, R.V., Schmincke, H.U., 1984. Pyroclastic Rocks. Springer Berlin, Heidelberg, p. 472. Folch, A., et al., 2020. FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides - part 1: Model physics and numerics. Geosci. Model Dev. 13, 1431–1458. Freret-Lorgeril, V., et al., 2021. Examples of multi-sensor determination of eruptive source parameters of explosive events at Mount Etna. Remote Sens. 13. Galli, P., Scionti, V., 2006. Two unknown M > 6 historical earthquakes revealed by palaeoseismological and archival researches in eastern Calabria (southern Italy). Seismotectonic implications. Terra Nova 18, 44–49. Gasparini, P., Zollo, A., Auger, E., Bobbio, A., Emolo, A., Frattini, M., Herrero, A., Iannaccone, G., Improta, L., Nielsen, S., Simini, M., Achauer, U., Jordan, M., Chiarabba, C., Ciaccio, M.G., Lucente, P.F., De Franco, R., Biella, G., Del Pezzo, E., De Matteis, R., La Rocca, M., De Natale, G., Capuano, P., Godano, C., Martini, M.,Pingue, F., Troise, C., Dietrich, M., Coutant, O., Guerra, I., Kissling, E., Marsella, E., Milana, G., Gorini, A., Marcucci, A., Zambonelli, E., Mirabile, L., Buonocore, B., Nowack, R., Scarpa, R., De Luca, G., Filippi, L., Solarino, S., Eva, E., Virieux, J., Bertrand, E., Charvis, P., Deschamps, A., Deverchere, J., Lomax, A., Montelli, R., Bongiovanni, G., 1998. Looking Inside Mt. Vesuvius. Eos (Washington. DC), 79, pp. 229–232. https://doi.org/10.1029/98EO00165. Giacomelli, L., Perrotta, A., Scandone, R., Scarpati, C., 2003. The eruption of Vesuvius of 79 AD and its impact on human environment in Pompeii. Episodes 26, 235–238. Giacomelli, L., Scandone, R., Rosi, M., 2021. The loss of geological memory of past catastrophes: the case of Pompeii. Ann. Geophys. 64, V0547. Gigante, M., 1989. Il Fungo sul Vesuvio secondo Plinio il Giovane. Lucarini Ed. 38. Gouhier, M., Donnadieu, F., 2008. Mass estimations of ejecta from Strombolian explosions by inversion of Doppler radar measurements. J. Geophys. Res. Solid Earth 113, 1–17. Gouhier, M., et al., 2019. Low efficiency of large volcanic eruptions in transporting very fine ash into the atmosphere. Sci. Rep. 9, 1449. Gurioli, L., Cioni, R., Sbrana, A., Zanella, E., 2002. Transport and deposition from pyroclastic flows over densely inhabited areas: Herculaneum (Italy). Sedimentology 49, 929–953. Gurioli, L., Pareschi, M.T., Zanella, E., Lanza, R., Deluca, E., Bisson, M., 2005a. Interaction of pyroclastic currents with human settlements: evidences from ancient Pompeii. Geology 33 (6), 441–444. Gurioli, L., Houghton, B., Cashman, K., Cioni, R., 2005b. Complex changes in eruption dynamics and the transition between Plinian and phreatomagmatic activity during the 79AD eruption of Vesuvius. Bull. Volcanol. 67, 144–159. https://doi.org/ 10.1007/s00445-004-0368-4. Gurioli, L., Zanella, E., Pareschi, M.T., Lanza, R., 2007. Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): flow direction and deposition (part I). J. Geophys. Res. 112 (B5) https://doi.org/10.1029/2006JB004444. Gurioli, L., Sulpizio, R., Cioni, R., Sbrana, A., Luperini, W., Santacroce, R., Andronico, D., 2010. Pyroclastic flow hazard assessment at Somma-Vesuvius based on the geological record. Bull. Volcanol. 72 (9), 1021–1038. https://doi.org/10.1007/ s00445-010-0379-2. Hannah, R., 2013. Greek and Roman Calendars. A&C Black. Hannah, R., 2016. Roman Calendars. A Companion to Science, Technology & Medicine in Ancient Greece and Rome, pp. 906–922. Harper, K., 2017. The Fate of Rome. Climate, Disease and the End of an Empire. Princeton University. Herzog, M., Oberhuber, J.M., Graf, H.-F., 2003. A Prognostic Turbulence Scheme for the Nonhydrostatic Plume Model ATHAM. J. Atmos. Sci. 2783–2796. Hildreth, W., Fierstein, J., 2012. The Novarupta-Katmai eruption of 1912—largest eruption of the twentieth century; centennial perspectives: U.S. Geological Survey Professional Paper 1791, p. 259. Insinga, D., Molisso, F., Lubritto, C., Sacchi, M., Passariello, I., Morra, V., 2008. The proximal marine record of Somma-Vesuvius volcanic activity in the Naples and Salerno bays, Eastern Tyrrhenian Sea, during the last 3 kyrs. J. Volcanol. Geotherm. Res. 177, 170–186. Jalali, B., Sicre, M.-A., Bassetti, M.-A., Kallel, N., 2016. Holocene climate variability in the North-Western Mediterranean Sea (Gulf of Lions). Clim. Past 12, 91–101. Jalali, B., Sicre, M.-A., Klein, V., Schmidt, S., Maselli, V., Lirer, F., Bassetti, M., Toucanne, S., Jorry, S.J., Insinga, D.D., Petrosino, P., Chales, ˆ F., 2018. Deltaic and coastal sediments as recorders of mediterranean regional climate and human impact over the past three millennia. Paleoceanogr. Paleoclimatol. 33, 579–593. Jenkins, S., Komorowski, J.C., Baxter, P.J., Spence, R., Picquout, A., Lavigne, F., Surono, 2013. The Merapi 2010 eruption: an interdisciplinary impact assessment methodology for studying pyroclastic density current dynamics. J. Volcanol. Geotherm. Res. 261, 316–329. Keenan-Jones, D., 2015. Somma-vesuvian ground movements and the water supply of pompeii and the bay of Naples. Am. J. Archaeol. 119, 191–215. https://doi.org/ 10.3764/AJA.119.2.0191. Keller, J., Ryan, W.B.F., Ninkovich, D., Altherr, R., 1978. Explosive volcanic activity in the Mediterranean over the past 200,000 yrs as recorded in deep-sea sediments. Geol. Soc. Am. Bull. 89, 591–604. Kent, D.V., Ninkovich, D., Pescatore, T., Sparks, R.S.J., 1981. Palaeomagnetic determination of emplacement temperature of Vesuvius AD 79 pyroclastic deposits. Nature 290, 393–396. Koyaguchi, T., Suzuki, Y.J., 2018. The condition of eruption column collapse: 1. A reference model based on analytical solutions. J. Geophys. Res. Solid Earth 123, 7461–7482. Koyaguchi, T., Suzuki, Y.J., Takeda, K., Inagawa, S., 2018. The condition of eruption column collapse: 2. Three-dimensional numerical simulations of eruption column dynamics. J. Geophys. Res. Solid Earth 123, 7483–7508. Lamb, H.H., 1995. Climate History and the Modern World, Second edition. Routledge, London, p. 433. Lanari, R., De Natale, G., Berardino, P., Sansosti, E., Ricciardi, G.P., Borgstrom, S., Capuano, P., Pingue, F., Troise, C., 2002. Evidence for a peculiar style of ground deformation inferred at Vesuvius volcano. Geophys. Res. Lett. 29 https://doi.org/ 10.1029/2001gl014571, 6-1-6–4. Lanphere, M., et al., 2007. 40Ar/39Ar ages of the AD 79 eruption of Vesuvius, Italy. Bull. Volcanol. 69, 259–263. Lirer, L., Pescatore, T., Booth, B., Walker, G.P.L., 1973. Two Plinian pumice-fall deposits from Somma-Vesuvius, Italy. Geol. Soc. Am. Bull. 84, 759–772. Lomax, A., Zollo, A., Capuano, P., Virieux, J., 2001. Precise, absolute earthquake location under Somma-Vesuvius volcano using a new three-dimensional velocity model. Geophys. J. Int. 146, 313–331. https://doi.org/10.1046/j.0956-540X.2001.01444.x. Luongo, G., Perrotta, A., Scarpati, C., 2003a. Impact of the AD 79 explosive eruption on Pompeii, I. Relations amongst the depositional mechanisms of the pyroclastic products, the framework of the buildings and the associated destructive events. J. Volcanol. Geotherm. Res. 126, 201–223. Luongo, G., Perrotta, A., Scarpati, C., De Carolis, E., Patricelli, G., Ciarallo, A., 2003b. Impact of the AD 79 explosiv eruption on Pompeii, II. Causes of death of the inhabitants inferred by stratigraphic analysis and areal distribution of the human casualties. J. Volcanol. Geotherm. Res. 126, 169–200. Macedonio, G., Pareschi, M.T., Santacroce, R., 1988. A numerical simulation of the plinian fall phase of 79 AD eruption of Vesuvius. J. Geophys. Res. B: Solid Earth 93 (B12), 14817–14827. https://doi.org/10.1029/JB093iB12p14817. Macedonio, G., Pareschi, M.T., Santacroce, R., 1990. Renewal of explosive activity at Vesuvius: models for the expected tephra fallout. J. Volcanol. Geotherm. Res. 40, 327–342. Maiuri, A., 1958. Pompeii. Sci. Am. 198 (4), 68–82. Malin, M.C., Sheridan, M.F., 1982. Computer assisted mapping of pyroclastic surges. Science 217, 637–639. Manville, V., N´emeth, K., Kano, K., 2009. Source to sink: a review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sediment. Geol. 220, 136–161. Marcaida, I., Maguregui, M., Morillas, H., Perez-Diez, S., Madariaga, J.M., 2019. Raman imaging to quantify the thermal transformation degree of Pompeian yellow ochre caused by the 79 AD Mount Vesuvius eruption. Anal. Bioanal. Chem. 411 (28), 7585–7593. Margaritelli, G., Vallefuoco, M., Di Rita, F., Capotondi, L., Bellucci, L.G., Insinga, D.D., Petrosino, P., Bonomo, S., Cacho, I., Cascella, A., Ferraro, L., Florindo, F., Lubritto, C., Lubritto, C., Lurcock, P.C., Magri, D., Pelosi, N., Rettori, R., Lirer, F., 2016. Marine response to climate changes during the last five millennia in the Central Mediterranean Sea. Glob. Planet. Chang. 142, 53–72. Marianelli, P., M´etrich, N., Santacroce, R., Sbrana, A., 1995. Mafic magma batches at Vesuvius: a glass inclusion approach to the modalities of feeding stratovolocanoes. Contrib. Mineral. Petrol. 120, 159–169. Martí, J., Groppelli, G., da Silveira, A.B., 2018. Volcanic stratigraphy: a review. J. Volcanol. Geotherm. Res. 357, 68–91. Martí, J., Doronzo, D.M., Pedrazzi, D., Colombo, F., 2019. Topographical controls on small-volume pyroclastic flows. Sedimentology 66, 2297–2317. Martí, J., Zafrilla, S., Andujar, J., Jimenez-Mejias, M., Scaillet, B., Pedrazzi, D., Doronzo, D.M., Scaillet, S., 2020. Controls of magma chamber zonation on eruption dynamics and deposits stratigraphy: the case of El Palomar fallout succession (Tenerife, Canary Islands). J. Volcanol. Geotherm. Res. 399, 106908. Marturano, A., 2008. Sources of ground movement at Vesuvius before the AD 79 eruption: evidence from contemporary accounts and archaeological studies. J. Volcanol. Geotherm. Res. 177, 959–970. https://doi.org/10.1016/J. JVOLGEORES.2008.07.017. Marturano, A., Varone, A., 1997. L’eruzione vesuviana del 24 agosto del 79 dC attraverso le lettere di Plinio il Giovane e le nuove evidenze archeologiche, pp. 57–72. Marturano, A., Varone, A., 2005. The AD 79 eruption: seismic activity and effects of the eruption on Pompeii. In: Cultural responses to the volcanic landscape: the Mediterranean and beyond. Archaeological Institute of America, AIA colloquia and conference papers, Vol. 8, pp. 241–260. Marturano, A., Aiello, G., Barra, D., 2011. Evidence for Late Pleistocene uplift at the Somma-Vesuvius apron near Pompeii. J. Volcanol. Geotherm. Res. 202, 211–227. https://doi.org/10.1016/j.jvolgeores.2011.02.010. Marturano, A., Aiello, G., Barra, D., 2013. Somma-Vesuvius ground deformation over the last glacial cycle. J. Volcanol. Geotherm. Res. 255, 90–97. https://doi.org/10.1016/ j.jvolgeores.2013.02.007. Marzano, F.S., Mereu, L., Scollo, S., Donnadieu, F., Bonadonna, C., 2020. Tephra mass eruption rate from ground-based x-band and l-band microwave radars during the November 23, 2013, Etna Paroxysm. IEEE Trans. Geosci. Remote Sens. 58, 3314–3327. Matoza, R.S., Fee, D., Green, D., Mialle, P., 2019. Volcano Infrasound and the International Monitoring System. In Infrasound Monitoring for Atmospheric Studies, vol. 5. (Springer International Publishing, pp. 1023–1077. McCormick, M., Büntgen, U., Cane, M.A., Cook, E.R., Harper, K., Huybers, P., Litt, T., Manning, S.W., Mayewski, P.A., More, A.F.M., Nicolussi, K., Tegel, W., 2012. Climate Change during and after the Roman Empire: Reconstructing the past from Scientific and Historical evidence. J. Interdiscip. Hist. 43 (2), 169–220. Mensing, S.A., et al., 2015. 2700 years of Mediterranean environmental change in central Italy: a synthesis of sedimentary and cultural records to interpret past impacts of climate on society. Quat. Sci. Rev. 116, 72–94. Meo, M., Tammaro, U., Capuano, P., 2008. Influence of topography on ground deformation at Mt. Vesuvius (Italy) by finite element modelling. Int. J. Non. Linear. Mech. 43, 178–186. https://doi.org/10.1016/J.IJNONLINMEC.2007.12.005. Merlin, A., 1962. Ann´ee Epigraphique, 288. http://db.edcs.eu/epigr/epi_einzel.php?s_ sprache=it&p_belegstelle=AE+1962,+00288&r_sortierung=Belegstelle. Moin, P., Squires, K.D., Cabot, W.H., Lee, S., 1991. A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A 3, 2746. Moitra, P., Sonder, I., Valentine, G.A., 2018. Effects of size and temperature-dependent thermal conductivity on the cooling of pyroclasts in air. Geochem. Geophys. Geosyst. 19, 3623–3636. Montone, P., Amato, A., Chiarabba, C., Buonasorte, G., Fiordelisi, A., 1995. Evidence of active extension in Quaternary volcanoes of Central Italy from breakout analysis and seismicity. Geophys. Res. Lett. 22, 1909–1912. https://doi.org/10.1029/ 95GL01326. Morgan, D.J., Blake, S., Rogers, N.W., De Vivo, B., Rolandi, G., Davidson, J.P., 2006. Magma chamber recharge at Vesuvius in the century prior to the eruption of A.D. 79. Geology 34, 845–848. Munno, R., Petrosino, P., 2004. New constraints on the occurrence of Y-3 Upper Pleistocene tephra marker layer in the Tyrrhenian Sea. Italian J. Quat. Sci. 17, 11–20. Muschitiello, F., Pausata, F.S.R., Lea, J.M., Mair, D.W.F., Wohlfarth, B., 2017. Enhanced ice sheet 351 melting driven by volcanic eruptions during the last deglaciation. Nat. Commun. 8 (1) https://doi.org/10.1038/s41467-017-01273-1, 352 1–9. N´emeth, K., Cronin, S.J., 2009. Phreatomagmatic volcanic hazards where rift-systems meet the sea, a study from Ambae Island, Vanuatu. J. Volcanol. Geotherm. Res. 180 (2–4), 246–258. N´emeth, K., Palmer, J., 2019. Geological mapping of volcanic terrains: discussion on concepts, facies models, scales, and resolutions from New Zealand perspective. J. Volcanol. Geotherm. Res. 385, 27–45. Neri, A., Dobran, F., 1994. Influence of eruption parameters on the thermofluid dynamics of collapsing volcanic columns. J. Geophys. Res. 99, 11833. Neri, A., Macedonio, G., 1996. Numerical simulation of collapsing volcanic columns with particles of two sizes. J. Geophys. Res. 101, 8153–8174. Neri, A., Esposti Ongaro, T., Macedonio, G., Gidaspow, D., 2003. Multiparticle simulation of collapsing volcanic columns and pyroclastic flow. J. Geophys. Res. 108, 2202. Neri, A., Esposti Ongaro, T., Menconi, G., de Michieli Vitturi, M., Cavazzoni, C., Erbacci, G., Baxter, P.J., 2007. 4D simulation of explosive eruption dynamics at Vesuvius. GRL 34. https://doi.org/10.1029/2006GL028597. Neri, A., Esposti, Ongaro T., de Michieli Vitturi, M., Cerminara, M., 2022. Multiphase Flow Modeling of Explosive Volcanic Eruptions. In: Transport Phenomena in Multiphase Systems. Mechanical Engineering Series. Springer, Cham. Osanna, M., 2021. Le impronte della morte: l’invenzione dei calchi dei pompeiani. In: Studi e ricerche del Parco archeologico di Pompei, vol. 46, pp. 45–65. Ed. L’Erma di Bretschneider. Osores, S., Ruiz, J., Folch, A., Collini, E., 2020. Volcanic ash forecast using ensemble based data assimilation: an ensemble transform Kalman filter coupled with the FALL3D-7.2 model (ETKF-FALL3D version 1.0). Geosci. Model Dev. 13, 1–22. Palladino, D.M., 2017. Simply pyroclastic currents. Bull. Volcanol. 79, 53. Papale, P., Dobran, F., 1993. Modeling of the ascent of magma during the plinian eruption of Vesuvius in A.D. 79. J. Volcanol. Geotherm. Res. 58 (1–4), 101–132. https://doi.org/10.1016/0377-0273(93)90104-Y. Pardini, F., et al., 2020. Ensemble-based data assimilation of volcanic ash clouds from satellite observations: application to the 24 december 2018 Mt. Etna explosive eruption. Atmosphere (Basel). 11, 1–31. Pepe, F., Di Donato, V., Insinga, D., Molisso, F., Faraci, C., Sacchi, M., Dera, R., Ferranti, L., Passaro, S., 2018. Seismic stratigraphy of upper Quaternary shallow water contourite drifts in the Gulf of Taranto (Ionian Sea, southern Italy). Mar. Geol. 397, 79–92. Pfeiffer, T., Costa, A., Macedonio, G., 2005. A model for the numerical simulation of tephra fall deposits. J. Volcanol. Geotherm. Res. 140, 273–294. Plunkett, G., Sigl, M., Schwaiger, H.F., Tomlinson, E.L., Toohey, M., McConnell, J.R., Pilcher, J.R., Hasegawa, T., Siebe, C., 2022. No evidence for tephra in Greenland from the historic eruption of Vesuvius in 79 CE: implications for geochronology and paleoclimatology. Clim. Past 18, 45–65. Prata, A.J., Grant, I.F., 2001. Retrieval of microphysical and morphological properties of volcanic ash plumes from satellite data: application to Mt Ruapehu, New Zealand. Q. J. R. Meteorol. Soc. 127, 2153–2179. Prata, A.J., Kerkmann, J., 2007. Simultaneous retrieval of volcanic ash and SO2 using MSG-SEVIRI measurements. Geophys. Res. Lett. 34, L05813. Prata, G.S., Ventress, L.J., Carboni, E., Mather, T.A., Grainger, R.G., Pyle, D.M., 2019. A new parameterization of volcanic ash complex refractive index based on NBO/T and SiO2 content. J. Geophys. Res.-Atmos. 124, 1779–1797. https://doi.org/ 10.1029/2018JD028679. Principe, C., Rosi, M., Santacroce, R., Sbrana, A., 1987. Explanatory Notes to the Geological Map of Vesuvius, Quaderni de “La Ricerca Scientifica”. CNR, Roma. Pyle, D.M., 1989. The thickness, volume and grainsize of tephra fall deposits. Bull. Volcanol. 51, 1–15. Pyle, D.M., 2000. Sizes of Volcanic Eruptions. In: Encyclopedia of Volcanoes. Academic Press. Radiotelevisione Italiana, 2020. Pompei - Ultima Scoperta. Rai Documentari. Regattieri, E., Giaccio, B., Zanchetta, G., Drysdale, R.N., Galli, P., Nomade, S., Peronace, E., Wulf, S., 2015. Hydrological variability over Apennine during the Early Last Glacial precession minimum, as revealed by a stable isotope record from Sulmona basin, Central Italy. J. Quat. Sci. 30, 19–31. Ricciardi, G.P., 2009. Diario del Monte Vesuvio. Edizioni Scientifiche e Artistiche. Ricco, C., Petrosino, S., Aquino, I., Cusano, P., Madonia, P., 2021. Tracking the recent dynamics of Mt. Vesuvius from joint investigations of ground deformation, seismicity and geofluid circulation. Sci. Report. 1–14, 2021 111 11. doi:10.1038/ s41598-020-79636-w. Ripepe, M., De Angelis, S., Lacanna, G., Voight, B., 2010. Observation of infrasonic and gravity waves at Soufri`ere Hills Volcano, Montserrat. Geophys. Res. Lett. 37, L00E14. Rivista di Studi Pompeiani - vol. XXXII, 2021 (L’Erma di Bretschneider). Roche, O., 2015. Nature and velocity of pyroclastic density currents inferred from models of entrainment of substrate lithic clasts. Earth Planet. Sci. Lett. 418, 115–125. Rolandi, G., Paone, A., Di Lascio, M., Stefani, G., 2007. The 79 AD eruption of Somma: the relationship between the date of the eruption and the southeast tephra dispersion. J. Volcanol. Geotherm. Res. 169, 87–98. Rose, W.I., Wunderman, R.L., Hoffman, M.F., Gale, L., 1983. Atmospheric hazards of volcanic activity from a volcanologist’s point of view: Fuego and Mount St. Helens. J. Volcanol. Geotherm. Res. 17, 133–157. Rossi, E., Bonadonna, C., 2021. SCARLET-1.0: SpheriCal Approximation for viRtuaL aggrEgaTes. Geosci. Model Dev. 14, 4379–4400. Ruggieri, N., Galassi, S., Tempesta, G., 2020. The effect of pyroclastic flows of the 79 AD eruption of Mount Vesuvius on the Pompeii’s city walls. The case study of the sector near the Tower XI. J. Cult. Herit. 43, 235–241. Russo, G., Giberti, G., 2004. Numerical modeling of surface deformations on Mt. Vesuvius volcano (Italy) in presence of asymmmetric elastic heterogeneities. J. Volcanol. Geotherm. Res. 133, 41–54. Russo, G., Giberti, G., Sartoris, G., 1997. Numerical modeling of surface deformation and mechanical stability of Vesuvius volcano, Italy. J. Geophys. Res. Solid Earth 102, 24785–24800. https://doi.org/10.1029/97JB01776. Sacchi, M., Insinga, D., Milia, A., Molisso, F., Raspini, A., Torrente, M.M., Conforti, A., 2005. Stratigraphic signature of the Vesuvius 79 AD event off the Sarno prodelta system, Naples Bay. Mar. Geol. 222-223, 443–469. Sacchi, M., Molisso, F., Violante, C., Esposito, E., Insinga, D., Lubritto, C., Porfido, S., Toth, T., 2009. Insights into the flood-dominated fan-deltas: very high-resolution seismic examples off the Amalfi cliffed coasts, eastern Tyrrhenian Sea. Geol. Soc. Lond. Spec. Publ. 322, 33–71. Samartin, S., Heiri, O., Joos, F., Renssen, H., Franke, J., Bronnimann, ¨ S., Tinner, W., 2017. Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nat. Geosci. 10, 207–212. Santacroce, R., 1987. Somma-Vesuvius. Quaderni de “La Ricerca Scientifica”. CNR, Roma. Scaillet, B., Pichavant, M., Cioni, R., 2008. Upward migration of Vesuvius magma chamber over the past 20,000 years. Nat. 216–219. https://doi.org/10.1038/ nature07232, 2008 4557210 455. Scandone, R., Giacomelli, L., 2001. The slow boiling of magma chambers and the dynamics of explosive eruptions. J. Volcanol. Geotherm. Res. 110, 121–136. Scandone, R., Giacomelli, L., Rosi, M., 2019. Death, survival and damaga during the 79 AD eruption of Vesuvius which destroyed Pompeii and Herculaneum. J. Res. Didactics Geogr. 2, 5–30. Scarpa, R., Tronca, F., Bianco, F., Del Pezzo, E., 2002. High resolution velocity structure beneath Mount Vesuvius from seismic array data. Geophys. Res. Lett. 29 https://doi. org/10.1029/2002GL015576, 36–1. Scarpati, C., Perrotta, A., Martellone, A., Osanna, M., 2020. Pompeian hiatuses: new stratigraphic data highlight pauses in the course of the AD 79 eruption at Pompeii. Geol. Mag. 157, 695–700. Sevink, J., De Neef, W., Di Vito, M.A., Arienzo, I., Attema, P.A.J., Van Loon, E.E., Ullrich, B., Den Haan, M., Ippolito, F., Noorda, N., 2020. A multidisciplinary study of an exceptional prehistoric waste dump in the mountainous inland of Calabria (Italy): implications for reconstructions of prehistoric land use and vegetation in Southern Italy. The Holocene. https://doi.org/10.1177/0959683620919974, 9/30 (2020). Shea, T., Gurioli, L., Houghton, B.F., Cioni, R., Cashman, K.V., 2011. Transition from stable to collapsing column during the 79AD eruption of Vesuvius: the role of pyroclats density. Geology 39 (7), 695–698. https://doi.org/10.1130/G32092.1. Shea, T., Gurioli, L., Houghton, B.F., 2012. Transitions between fall phases and pyroclastic density currents during the AD 79 eruption at Vesuvius: building a transient conduit model from the textural and volatile record. Bull. Volcanol. 74, 2363–2381. https://doi.org/10.1007/s00445-012-0668-z. Sheridan, M.F., Malin, M.C., 1983. Application of computer assisted mapping to volcanic hazard evaluation of surge eruptions: Vulcano, Lipari and Vesuvius. J. Volcanol. Geotherm. Res. 17, 187–202. Sheridan, M.F., Barberi, F., Rosi, M., Santacroce, R., 1981. A model of plinian eruptions of Vesuvius. Nature 289, 282–285. Shimizu, H.A., et al., 2021. Validation of a two-layer depth-averaged model by comparison with an experimental dilute stratified pyroclastic density current. Bull. Volcanol. 83, 1–12. Sicre, M.A., Jalali, B., Martrat, B., Schmidt, S., Bassetti, M.A., Kallel, N., 2016. Sea surface temperature variability in the North Western Mediterranean Sea (Gulf of Lion) during the Common Era. Earth Planet. Sc. Lett. 456, 124–133. Siebe, C., Abrams, M., Macias, J.L., Obenholzner, J., 1996. Repeated volcanic distasters in Prehispanic time at Popocat´epetl, Central Mexico: past key to the future? Geology 24, 399–402. Sigl, M., Winstrup, M., McConnell, J.R., Welten, K.C., Plunkett, G., Ludlow, F., et al., 2015. Timing and 397 climate forcing of volcanic eruptions for the past 2,500 years. Nature 523 (7562). https://doi.org/10.1038/nature14565, 543–549. 398. Sigurdsson, H., Carey, S., Cornell, W., Pescatore, T., 1985. The eruption of Vesuvius in a. D. 79, Natl. Geogr. Res. 3, 332–397. Sigurdsson, H., Cornell, W., Carey, S., 1990. Influence of magma withdrawal on compositional gradients during the AD 79 Vesuvius eruption. Nature 345, 519–521. Sohn, Y.K., Cronin, S.J., Brenna, M., Smith, I.E.M., N´emeth, K., White, J.D.L., Murtagh, R. M., Jeon, Y.M., Kwon, C.W., 2011. Ilchulbong tuff cone, Jeju Island, Korea, revisited; a compound monogenetic volcano involving multiple magma pulses, shifting vents, and discrete eruptive phases. Geol. Soc. Am. Bull. 124 (3–4), 259–274. Sparks, R.S.J., et al., 1997. Volcanic Plumes. Wiley, p. 574. Stefani, G., 2006. La vera data dell’eruzione. Archeo n. 10 (260) pagg. 10-13. Sulpizio, et al., 2008. Discriminating the long distance dispersal of fine ash from sustained columns or near ground ash clouds: the example of the Pomici di Avellino eruption (Somma-Vesuvius, Italy). J. Volcanol. Geotherm. Res. 177, 263–276. Sulpizio, et al., 2012. Hazard assessment of far-range volcanic ash dispersal from a violent Strombolian eruption at Somma-Vesuvius volcano, Naples, Italy: implications on civil aviation. Bull. Volcanol. 74, 2205–2218.Sulpizio, R., Dellino, P., Doronzo, D.M., Sarocchi, D., 2014. Pyroclastic density currents: state of the art and perspectives. J. Volcanol. Geotherm. Res. 283, 36–65. Suzuki, T., 1983. A theoretical model for dispersion of tephra. In: Shimozuru, D., Yokoyama, I. (Eds.), Volcanism: Physics and Tectonics. Arc, Tokyo, pp. 95–113. Suzuki, Y.J., Koyaguchi, T., Ogawa, M., Hachisu, I., 2005. A numerical study of turbulent mixing in eruption clouds using a three-dimensional fluid dynamics model. J. Geophys. Res. 110, B08201. Suzuki, Y.J., et al., 2016a. Inter-comparison of three-dimensional models of volcanic plumes. J. Volcanol. Geotherm. Res. 326, 26–42. Suzuki, Y.J., Costa, A., Koyaguchi, T., 2016b. On the relationship between eruption intensity and volcanic plume height: Insights from three-dimensional numerical simulations. J. Volcanol. Geotherm. Res. 326, 120–126. Tadini, A., Bevilacqua, A., Neri, A., Cioni, R., Biagioli, G., de Michieli Vitturi, M., Esposti Ongaro, T., 2021. Reproducing pyroclastic density current deposits of the 79CE eruption of the Somma–Vesuvius volcano using the box-model approach. Solid Earth 12, 119–139. https://doi.org/10.5194/se-12-119-2021. Tammaro, U., Riccardi, U., Romano, V., Meo, M., Capuano, P., 2021. Topography and structural heterogeneities in surface ground deformation: a simulation test for Somma-Vesuvius volcano. Adv. Geosci. 52, 145–152. https://doi.org/10.5194/ ADGEO-52-145-2021. Theys, N., Hedelt, P., De Smedt, I., Lerot, C., Yu, H., Vlietinck, J., Pedergnana, M., Arellano, S., Galle, B., Fernandez, D., et al., 2019. Global monitoring of volcanic SO2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor. Sci. Rep. 9, 1–10. Tierz, P., Stefanescu, E.R., Sandri, L., Sulpizio, R., Valentine, G.A., Marzocchi, W., Patra, A.K., 2018. Towards quantitative volcanic risk of pyroclastic density currents: Probabilistic hazard curves and maps around Somma-Vesuvius (Italy). J. Geophys. Res. Solid Earth 123, 6299–6317. https://doi.org/10.1029/2017JB015383. Todesco, M., Neri, A., Esposti, Ongaro T., Papale, P., Macedonio, G., Santacroce, R., Longo, A., 2002. Pyroclastic flow hazard assessment at Vesuvius (Italy) by using numerical models. I. Large-scale dynamics. Bull. Volcanol. 64, 155–177. Toniolo, L., Amoretti, V., Gravina, E., Martinelli, R., Scala, P., Sparice, D., 2021. Da Mumia alle ultime vittime di Pompei: nuove ricerche nella villa di Civita Giuliana. Rivist. Studi Pomp. XXXII, 123–130. Tramparulo, F.D.A., Vitale, S., Isaia, R., Tadini, A., Bisson, M., Prinzi, E.P., 2018. Relation between alternating open/closed-conduit conditions and deformation patterns: an example from the Somma-Vesuvius volcano (southern Italy). J. Struct. Geol. 112, 138–153. https://doi.org/10.1016/J.JSG.2018.05.008. Trolese, M., Cerminara, M., Esposti Ongaro, T., Giordano, G., 2019. The footprint of column collapse regimes on pyroclastic flow temperatures and plume heights. Nat. Commun. 10. Valentine, G.A., 1987. Stratified flow in pyroclastic surges. Bull. Volcanol. 49, 616–630. Valentine, G.A., Doronzo, D.M., Dellino, P., de Tullio, M.D., 2011. Effects of volcano profile on dilute pyroclastic density currents: numerical simulations. Geology 39, 947–950. Vazquez, J.A., Ort, M.H., 2006. Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA. J. Volcanol. Geotherm. Res. 154, 222–236. Wilson, L., Walker, G.P.L., 1987. Explosive volcanic eruptions - VI. Ejecta dispersal in plinian eruptions: the control of eruption conditions and atmospheric properties. Geophys. J.R. Astron.Astron. Soc. 89, 657–679. Wulf, S., 2000. Das tephrochronologische Referenzprofil des Lago Grande di Monticchio - Eine detaillierte Stratigraphie des suditalienischen explosiven Vulkanismus der letzten 100.000 Jahre. Ph.D. Thesis, University of Potsdam, Germany, Scientific Technical. Report STR01/03, p. 124. Zanchetta, G., Sulpizio, R., Roberts, N., Cioni, R., Eastwood, W.J., Siani, G., Caron, B., Paterne, M., Santacroce, R., 2011. Tephrostratigraphy, chronology and climatic events of the Mediterranean basin during the Holocene: an overview. The Holocene 21, 33–52. Zanchetta, G., Giraudi, C., Sulpizio, R., Magny, M., Drysdale, R.N., Sadori, L., 2012a. Constraining the onset of the Holocene “Neoglacial” over the Central Italy using tephra layers. Quat. Res. 78, 236–247. Zanchetta, G., van Welden, A., Baneschi, I., Drysdale, R.N., Sadori, L., Roberts, N., Giardini, M., Beck, C., Pascucci, V., 2012b. Multiproxy record for the last 4500 years from Lake Shkodra (Albania/Montenegro). J. Quat. Sci. 27, 780–789. Zanchetta, G., Regattieri, E., Isola, I., Drysdale, R.N., Bini, M., Baneschi, I., Hellstrom, J. C., 2016. The so-called “4.2 event” in the Central Mediterranean and its climatic teleconnections. Alpine Medit. Quat. 29 (1), 5–17. Zanchetta, G., Bini, M., Di Vito, M.A., Sulpizio, R., Sadori, L., 2019. Tephrostratigraphy of paleoclimatic archives in Central Mediterranean during the Bronze Age. Quat. Int. 499, 186–194. Zanchetta, G., et al., 2020. I livelli vulcanoclastici: analisi chimica e considerazioni deposizionali. Il Musteriano di Grotta del Cavallo nel Salento (Scavi 1986-2005). Cultura e ambienti. Zanella, E., Gurioli, L., Pareschi, M.T., Lanza, R., 2007. Urban fabric influences on pyroclastic density currents at Pompeii (Italy): deposit temperature (part II). J. Geophys. Res. 112 (B5) https://doi.org/10.1029/2006JB004775. Zanella, E., Sulpizio, R., Gurioli, L., Lanza, R., 2014. Temperatures of the pyroclastic density currents deposits emplaced in the last 22 kyr at Somma-Vesuvius (Italy) Geological Society special Publications. In: Ort, M.H., Porreca, M., Geissman, J.W. (Eds.), The Use of Palaeomagnetism and Rock Magnetism to Understand Volcanic Processes, 396. Special Publications, Geological Society, London, pp. 13–33. Zollo, A., Gasparini, P., Virieux, J., Le Meur, H., De Natale, G., Biella, G., Boschi, E., Capuano, P., De Franco, R., Dell’Aversana, P., De Matteis, R., Guerra, I., Iannaccone, G., Mirabile, L., Vilardo, G., 1996a. Seismic evidence for a low-velocity zone in the upper crust beneath mount vesuvius. Science (80). 274, 592–594. https://doi.org/10.1126/science.274.5287.592. Zollo, A., Gasparini, P., Biella, G., De Franco, R., Buonocore, B., Mirabile, L., De Natale, G., Milano, G., Pingue, F., Vilardo, G., Bruno, P., De Matteis, R., Le Meur, H., Iannaccone, G., Deschamps, A., Virieux, J., Nardi, A., Frepoli, A., Hunstad, I., Guerra, I., 1996b. 2D seismic tomography of Somma-Vesuvius: description of the experiment and preliminary results. Ann. Geofis. 39, 471–486. https://doi.org/ 10.4401/ag-3983. Zollo, A., Marzocchi, W., Capuano, P., Lomax, A., Iannaccone, G., 2002. Space and Time Behavior of Seismic activity at Mt. Vesuvius Volcano, Southern Italy. Bull. Seismol. Soc. Am. 92, 625–640. https://doi.org/10.1785/0120000287. Zuccaro, G., Ianniello, D., 2004. Interaction of pyroclastic flows with building structures in an urban settlement: a fluid-dynamic simulation impact model. J. Volcanol. Geotherm. Res. 133, 345–352.en_US
dc.description.obiettivoSpecifico1V. Storia eruttivaen_US
dc.description.obiettivoSpecifico4V. Processi pre-eruttivien_US
dc.description.obiettivoSpecifico5V. Processi eruttivi e post-eruttivien_US
dc.description.obiettivoSpecifico6V. Pericolosità vulcanica e contributi alla stima del rischioen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn0012-8252en_US
dc.contributor.authorDoronzo, Domenico Maria-
dc.contributor.authorDi Vito, Mauro Antonio-
dc.contributor.authorArienzo, Ilenia-
dc.contributor.authorBini, Monica-
dc.contributor.authorCalusi, Benedetta-
dc.contributor.authorCerminara, Matteo-
dc.contributor.authorCorradini, Stefano-
dc.contributor.authorde Vita, Sandro-
dc.contributor.authorGiaccio, Biagio-
dc.contributor.authorGurioli, Lucia-
dc.contributor.authorMannella, Giorgio-
dc.contributor.authorRicciardi, Giovanni Pasquale-
dc.contributor.authorRucco, Ilaria-
dc.contributor.authorSparice, Domenico-
dc.contributor.authorTodesco, Micol-
dc.contributor.authorTrasatti, Elisa-
dc.contributor.authorZanchetta, Giovanni-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentUniversitè Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, Clermont-Ferrand, Franceen_US
dc.contributor.departmentDipartimento di Scienze della Terra, Universit`a di Pisa, Italaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptUniversità di Pisa-
crisitem.author.deptUniversità degli Studi di Firenze-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptCNR - IGAG-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.orcid0000-0002-6866-8870-
crisitem.author.orcid0000-0002-7913-9149-
crisitem.author.orcid0000-0002-6213-056X-
crisitem.author.orcid0000-0003-1482-2630-
crisitem.author.orcid0000-0001-9465-1872-
crisitem.author.orcid0000-0001-5155-5872-
crisitem.author.orcid0000-0001-9432-3246-
crisitem.author.orcid0000-0002-5337-7560-
crisitem.author.orcid0000-0002-5066-5153-
crisitem.author.orcid0000-0002-5733-6352-
crisitem.author.orcid0000-0002-8692-7258-
crisitem.author.orcid0000-0002-5939-0985-
crisitem.author.orcid0000-0002-2983-045X-
crisitem.author.orcid0000-0002-7080-9599-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Doronzo et al_2022.pdfOpen Access published article28.31 MBAdobe PDFView/Open
Show simple item record

Page view(s)

1,174
checked on Apr 17, 2024

Download(s)

96
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric