Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/15514
DC FieldValueLanguage
dc.date.accessioned2022-02-28T10:59:18Z-
dc.date.available2022-02-28T10:59:18Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/2122/15514-
dc.description.abstractPyroclastic currents are described as gravity currents, and the classic conceptual model gives a first-order importance to the density of such currents. This directs quantitative models to assume specific flow structures (shallow water or equilib rium turbulent boundary layer), which may apply to restricted volcanic areas inde pendently of source dynamics or may correspond to source dynamics separate from topographic interaction. The recent introduction of two end-members of pyroclastic currents, inertial and forced, is further developed here, leading to a global conceptual model in which source dynamics and topographic interaction are both taken into account. The concept of energy facies is defined here as the ensemble of the first order indicators of pyroclastic currents (topological aspect ratio, competence ratio and emplacement temperature) that are proxies of the energy of such currents. Nine energy facies are introduced with general applicability and with the goal to globally characterize pyroclastic currents from vent to deposit.en_US
dc.language.isoEnglishen_US
dc.publisher.nameWileyen_US
dc.relation.ispartofTerra Novaen
dc.relation.ispartofseries1/34(2022)en_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectEnergy faciesen_US
dc.subjectpyroclastic currentsen_US
dc.titleEnergy facies : A global view of pyroclastic currents from vent to depositen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber1-11en_US
dc.identifier.doi10.1111/ter.12561en_US
dc.relation.referencesAndrews, B. J., & Manga, M. (2012). Experimental study of turbulence, sedimentation, and coignimbrite mass partitioning in dilute py roclastic density currents. Journal of Volcanology and Geothermal Research, 225–226, 30–44. https://doi.org/10.1016/j.jvolgeores.2012.02.011 Báez, W., Arnosio, M., Chiodi, A., Ortiz Yañes, A., Viramonte, J. G., Bustos, E., Giordano, G., & López, J. F. (2015). Estratigrafía y evolu ción del Complejo Volcánico Cerro Blanco, Puna Austral, Argentina. Revista Mexicana De Ciencias Geológicas, 32, 29–49. Báez, W., Bustos, E., Chiodi, A., Reckziegel, F., Arnosio, M., de Silva, S., Giordano, G., Viramonte, J. G., Sampietro-Vattuone, M. M., & Peña-Monné, J. L. (2020). Eruptive style and flow dynamics of the pyroclastic density currents related to the Holocene Cerro Blanco eruption (Southern Puna plateau, Argentina). Journal of South American Earth Sciences, 98, 102482. https://doi.org/10.1016/j.jsames.2019.102482 Báez, W., de Silva, S., Chiodi, A., Bustos, E., Giordano, G., Arnosio, M., Suzano, N., Viramonte, J. G., Norini, G., & Groppelli, G. (2020). Pulsating flow dynamics of sustained, forced pyroclastic density cur rents: Insights from a facies analysis of the Campo de la Piedra Pomez ignimbrite, southern Puna, Argentina. Bulletin of Volcanology, 82, 53. Benage, M. C., Dufek, J., & Mothes, P. A. (2016). Quantifying entrain ment in pyroclastic density currents from the Tungurahua erup tion, Ecuador: Integrating field proxies with numerical simula tions. Geophysical Research Letters, 43, 6932–6941. https://doi.org/10.1002/2016GL069527 Ben-Naim, E., Machta, B., & Machta, J. (2005). Power-law velocity distri butions in granular gases. Physical Review E, 72, 021302. https://doi.org/10.1103/PhysRevE.72.021302 Branney, M. J., & Kokelaar, B. P. (2002). Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society of London Memoirs, 27, 152. Bursik, M. I., & Woods, A. W. (1991). Buoyant, superbuoyant, and col lapsing volcanic eruptions. Journal of Volcanology and Geothermal Research, 45, 347–350. Bursik, M. I., & Woods, A. W. (1996). The dynamics and thermodynamics of large ash flows. Bulletin of Volcanology, 58, 175–193. https://doi.org/10.1007/s004450050134 Carazzo, G., Kaminski, E., & Tait, S. (2008). On the rise of turbulent plumes: Quantitative effects of variable entrainment for submarine hydrothermal vents, terrestrial and extra terrestrial explosive vol canism. Journal of Geophysical Research, 113, B09201. https://doi.org/10.1029/2007JB005458 Carey, S., & Sparks, R. S. J. (1986). Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bulletin of Volcanology, 48, 109–125. https://doi.org/10.1007/BF01046546 Cas, R. A. F., Wright, H. M. N., Folkes, C. B., Lesti, C., Porreca, M., Giordano, G., & Viramonte, J. G. (2011). The flow dynamics of an extremely large volume pyroclastic flow, the 2.08-Ma Cerro Galán Ignimbrite, NW Argentina, and comparison with other flow types. Bulletin of Volcanology, 73, 1583–1609. https://doi.org/10.1007/s00445-011-0564-y Cas, R. A. F., & Wright, J. V. (1987). Volcanic successions: Modern and an cient. Chapman & Hall. Cashman, K. V., & Giordano, G. (2014). Calderas and magma reservoirs. Journal of Volcanology and Geothermal Research, 288, 28–45. https://doi.org/10.1016/j.jvolgeores.2014.09.007 Colucci, S., de' Michieli Vitturi, M., Neri, A., & Palladino, D. M. (2014). An integrated model of magma chamber, conduit and column for the analysis of sustained explosive eruptions. Earth and Planetary Science Letters, 404, 98–110. https://doi.org/10.1016/j.epsl.2014.07.034 Costa, A., Suzuki, Y. J., & Koyaguchi, T. (2018). Understanding the plume dynamics of explosive super-eruptions. Nature Communications, 9, 654. de Silva, S. L., & Gregg, P. M. (2014). Thermomechanical feedbacks in magmatic systems: Implications for growth, longevity, and evolu tion of large caldera-forming magma reservoirs and their supere ruptions. Journal of Volcanology and Geothermal Research, 282, 77–91. https://doi.org/10.1016/j.jvolgeores.2014.06.001 Degruyter, W., & Bonadonna, C. (2013). Impact of wind on the condi tion for column collapse of volcanic plumes. Earth and Planetary Science Letters, 377–378, 218–226. https://doi.org/10.1016/j.epsl.2013.06.041 Dellino, P., Dioguardi, F., Mele, D., D'addabbo, M., Zimanowski, B., Büttner, R., Doronzo, D. M., Sonder, I., Sulpizio, R., Dürig, T., & La Volpe, L. (2014). Volcanic jets, plumes and collapsing fountains: Evidence from large-scale experiments, with particular empha sis on the entrainment rate. Bulletin of Volcanology, 76, 834–852. https://doi.org/10.1007/s00445-014-0834-6 Di Vito, M. A., Zanella, E., Gurioli, L., Lanza, R., Sulpizio, R., Bishop, J., Tema, E., Boenzi, G., & Laforgia, E. (2009). The Afragola settle ment near Vesuvius, Italy: The destruction and abandonment of a Bronze Age village revealed by archeology, volcanology and rock magnetism. Earth and Planetary Science Letters, 277, 408–421. Doronzo, D. M. (2012). Two new end members of pyroclastic density currents: Forced convection-dominated and inertia-dominated. Journal of Volcanology and Geothermal Research, 219–220, 87–91. https://doi.org/10.1016/j.jvolgeores.2012.01.010 Doronzo, D. M., de Tullio, M. D., Pascazio, G., Dellino, P., & Liu, G. (2015). On the interaction between shear dusty currents and buildings in vertical collapse: Theoretical aspects, experimental observa tions, and 3D numerical simulation. Journal of Volcanology and Geothermal Research, 302, 190–198. https://doi.org/10.1016/j.jvolgeores.2015.07.011 Doronzo, D. M., & Dellino, P. (2014). Pyroclastic density currents and local topography as seen with the conveyer model. Journal of Volcanology and Geothermal Research, 278–279, 25–39. https://doi.org/10.1016/j.jvolgeores.2014.03.012 Doronzo, D. M., Dellino, P., Sulpizio, R., & Lucchi, F. (2017). Merging field mapping and numerical simulation to interpret the lithofacies vari ations from unsteady pyroclastic density currents on uneven ter rain: The case of La Fossa di Vulcano (Aeolian Islands, Italy). Journal of Volcanology and Geothermal Research, 330, 36–42. https://doi.org/10.1016/j.jvolgeores.2016.11.016 Doronzo, D. M., Martí, J., Sulpizio, R., & Dellino, P. (2012). Aerodynamics of stratovolcanoes during multiphase processes. Journal of Geophysical Research, 117, B01207. https://doi.org/10.1029/2011JB008769 Druitt, T. H., & Sparks, R. S. J. (1984). On the formation of calderas during ignimbrite eruptions. Nature, 310, 679–681. https://doi.org/10.1038/310679a0 Dufek, J., & Bergantz, G. W. (2007). Dynamics and deposits generated by the Kos Plateau Tuff eruption: Controls of basal particle loss on pyroclastic flow transport. Geochemistry, Geophysics, Geosystems, 8, Q12007. https://doi.org/10.1029/2007GC001741 Dufek, J., Esposti Ongaro, T., & Roche, O. (2015). Pyroclastic density currents: Processes and models. In H. Sigurdsson, B. Houghton, S. McNutt, H. Rymer & J. Stix (Eds.), The encyclopedia of volcanoes 2nd edition (pp. 617–629). Elsevier. Esposti Ongaro, T., Clarke, A. B., Voight, B., Neri, A., & Widiwijayanti, C. (2012). Multiphase flow dynamics of pyroclastic density cur rents during the May 18, 1980 lateral blast of Mount St. Helens (USA). Journal of Geophysical Research, 117, B06208. https://doi.org/10.1029/2011JB009081 Esposti Ongaro, T., Komorovski, J. C., Legendre, Y., & Neri, A. (2020). Modelling pyroclastic density currents from a subplinian eruption at La Soufrière de Guadeloupe (West Indies, France). Bulletin of Volcanology, 82, 76. https://doi.org/10.1007/s00445-020-01411-6 Fierstein, J., & Hildreth, W. (1992). The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska. Bulletin of Volcanology, 54, 646–684. https://doi.org/10.1007/BF00430778 Fisher, R. V., Orsi, G., Ort, M. H., & Heiken, G. (1993). Mobility of a large volume pyroclastic flow emplacement of the Campanian ignimbrite, Italy. Journal of Volcanology and Geothermal Research, 56, 205–220. https://doi.org/10.1016/0377-0273(93)90017-L Giordano, G. (1998). The effect of paleotopography on lithic distribu tion and facies associations of small volume ignimbrites: The WTT Cupa (Roccamonfina volcano, Italy). Journal of Volcanology and Geothermal Research, 87, 255–273. https://doi.org/10.1016/S0377-0273(98)00096-1 Giordano, G., & Dobran, F. (1994). Computer simulations of the Tuscolano Artemisio's second pyroclastic flow unit (Alban Hills, Latium, Italy). Journal of Volcanology and Geothermal Research, 61, 69–94. https://doi.org/10.1016/0377-0273(94)00013-1 Giordano, G., & Doronzo, D. M. (2017). Sedimentation and mobility of PDCs: A reappraisal of ignimbrites’ aspect ratio. Scientific Reports, 7, 4444. https://doi.org/10.1038/s41598-017-04880-6 Guzman, S., Doronzo, D. M., Martí, J., & Seggiaro, R. (2020). Characteristics and emplacement mechanisms of the Coranzuli ignimbrites (Central Andes). Sedimentary Geology, 405, 105699. Hildreth, W., & Wilson, C. J. N. (2007). Compositional zoning of the Bishop Tuff. Journal of Petrology, 48, 951–999. https://doi.org/10.1093/petrology/egm007 Jessop, D. E., Gilchrist, J., Jellinek, A. M., & Roche, O. (2016). Are erup tions from linear fissures and caldera ring dykes more likely to produce pyroclastic flows? Earth and Planetary Science Letters, 454, 142–153. https://doi.org/10.1016/j.epsl.2016.09.005 Lube, G., Breard, E. C. P., Esposti Ongaro, T., Dufek, J., & Brand, B. (2020). Multiphase flow behaviour and hazard prediction of pyroclastic density currents. Nature Reviews Earth & Environment, 1, 348–365. https://doi.org/10.1038/s43017-020-0064-8 Martí, J., Diez-Gil, J. L., & Ortiz, R. (1991). Conduction model for the ther mal influence of lithic clasts in mixtures of hot gases and ejecta. Journal of Geophysical Research, 96, 21879–21885. https://doi.org/10.1029/91JB02149 Martí, J., Geyer, A., Folch, A. et al (2009). A genetic classification of col lapse calderas based on field studies, and analogue and theoretical modelling. In T. Thordarson (Ed.), Studies in volcanology: The legacy of George walker (pp. 249–266). GSL Special Publications. Murcia, H. F., Borrero, C. A., Pardo, N., Alvarado, G. E., Arnosio, M., & Scolamacchia, T. (2013). Volcaniclastic deposits: Terminology and concepts for a classification in Spanish. Revista Geológica De America Central, 48, 15–39. Navarrete, C., Butler, K. L., Hurley, M., & Marquez, M. (2020). An early Jurassic graben caldera of Chon Aike silicic LIP at the southernmost massif of the world: The Deseado caldera, Patagonia, Argentin. Journal of South American Earth Sciences, 101, 102626. Navarrete, C., Hurley, M., Butler, K. L., Liendo, I., Litvak, V., & Folguera, A. 2020). Jurassic volcanism of the Chon Aike silicic LIP in the north eastern Deseado Massif. Journal of South American Earth Sciences. In Press, 102886. https://doi.org/10.1016/j.jsames.2020.102886 Neri, A., Di Muro, A., & Rosi, M. (2002). Mass partitioning during collaps ing and transitional columns by using numerical simulations. Journal of Volcanology and Geothermal Research, 115, 1–18. Palladino, D. M. (2017). Simply pyroclastic currents. Bulletin of Volcanology, 79, https://doi.org/10.1007/s00445-017-1139-3 Palladino, D. M., Gaeta, M., Giaccio, B., & Sottili, G. (2014). On the anat omy of magma chamber and caldera collapse: The example of trachy-phonolitic explosive eruptions of the Roman Province (cen tral Italy). Journal of Volcanology andGeothermal Research, 281, 12–26. https://doi.org/10.1016/j.jvolgeores.2014.05.020 Palladino, D. M., & Giordano, G. (2019). On the mobility of pyroclastic currents in light of deposit thickness and clast size trends. Journal of Volcanology and Geothermal Research, 384, 64–74. https://doi.org/10.1016/j.jvolgeores.2019.07.014 Palladino, D. M., & Pettini, M. (2020). Source- vs topographic-forcing in pyroclastic currents: The case of the Orvieto-Bagnoregio Ignimbrite, Vulsini, central Italy. Periodico Di Mineralogia, 89, 217–226. Pensa, A., Capra, L., & Giordano, G. (2019). Ash clouds temperature esti mation. Implication on dilute and concentrated PDCs coupling and topography confinement. Scientific Reports, 9, 5657. https://doi.org/10.1038/s41598-019-42035-x Popper, K. (1963). Conjectures and refutations: The growth of scientific knowledge. Routledge. Roche, O. (2015). Nature and velocity of pyroclastic density currents inferred from models of entrainment of substrate lithic clasts. Earth and Planetary Science Letters, 418, 115–125. https://doi.org/10.1016/j.epsl.2015.03.001 Roche, O., Buesch, D. C., & Valentine, G. A. (2016). Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption. Nature Communications, 7, 10890. https://doi.org/10.1038/ncomms10890 Romano, C., Vona, A., Campagnola, S., Giordano, G., Arienzo, I., & Isaia, R. (2020). Modelling and physico-chemical constraints to the 4.5 ka Agnano-Monte Spina Plinian eruption (Campi Flegrei, Italy). Chemical Geology, 532, 119301. https://doi.org/10.1016/j.chemgeo.2019.119301 Rosi, M., Di Traglia, F., Pistolesi, M., Esposti Ongaro, T., de' Michieli Vitturi, M., & Bonadonna, C. (2018). Dynamics of shallow hydrothermal eruptions: New insights from Vulcano's Breccia di Commenda erup tion. Bulletin of Volcanology, 80, 83. https://doi.org/10.1007/s00445-018-1252-y Rowley, P. J., Roche, O., Druitt, T. H., & Cas, R. A. F. (2014). Experimental study of dense pyroclastic density currents using sustained, gas fluidized granular flows. Bulletin of Volcanology, 76, 855. https://doi.org/10.1007/s00445-014-0855-1 Shea, T., Gurioli, L., & Houghton, B. F. (2012). Transitions between fall phases and pyroclastic density currents during the AD 79 eruption at Vesuvius: Building a transient conduit model from the textural and volatile record. Bulletin of Volcanology, 74, 2363–2381. https://doi.org/10.1007/s00445-012-0668-z Silleni, A., Giordano, G., Isaia, R., & Ort, M. H. (2020). The magnitude of the 39.8 ka Campanian Ignimbrite eruption, Italy: Methods, uncer tainties and errors. Frontiers Earth Science, 8, 543399. Sparks, R. S. J., Wilson, L., & Hulme, G. (1978). Theoretical modeling of the generation, movement, and emplacement of pyroclastic flows by column collapse. Journal of Geophysical Research,83,17271739.https://doi.org/10.1029/JB083iB04p01727 Sulpizio, R., Dellino, P., Doronzo, D. M., & Sarocchi, D. (2014). Pyroclastic density currents: State of the art and perspectives. Journal of Volcanology and Geothermal Research, 283, 36–65. https://doi.org/10.1016/j.jvolgeores.2014.06.014 Trolese, M., Cerminara, M., Esposti Ongaro, T., & Giordano, G. (2019). The footprint of column collapse regimes on pyroclastic flow tem peratures and plume heights. Nature Communications, 10, 2476. https://doi.org/10.1038/s41467-019-10337-3 Trolese, M., Giordano, G., Cifelli, F., Winkler, A., & Mattei, M. (2017). Forced transport of thermal energy in magmatic and phreatomag matic large volume ignimbrites: Paleomagnetic evidence from the Colli Albani volcano, Italy. Earth and Planetary Science Letters, 478, 179–191. https://doi.org/10.1016/j.epsl.2017.09.004 Trolese, M., Giordano, G., Komorowski, J. C., Jenkins, S. F., Baxter, P. J., Cholik, N., Raditya, P., & Corrado, S. (2018). Very rapid cooling of the energetic pyroclastic density currents associated with the 5 November 2010 Merapi eruption (Indonesia). Journal of Volcanology and Geothermal Research, 358, 1–12. https://doi.org/10.1016/j.jvolgeores.2018.06.004 Valentine, G. A. (2020). Initiation of dilute and concentrated pyroclas tic currents from collapsi deposits. Bulletin of Volcanology, 82, 20. https://doi.org/10.1007/s00445-020-1366-x Valentine, G. A., Palladino, D. M., DiemKaye, K., & Fletcher, C. (2019). Lithic-rich and lithic-poor ignimbrites and their basal deposits: Sovana and Sorano formations (Latera caldera, Italy). Bulletin of Volcanology, 81, 29. https://doi.org/10.1007/s00445-019-1288-7 Valentine, G. A., & Wohletz, K. H. (1989). Numerical models of Plinian eruptions columns and pyroclastic flows. Journal of Geophysical Research, 94, 1867–1887. Vazquez, J. A., & Ort, M. H. (2006). Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA. Journal of Volcanology and Geothermal Research, 154, 222–236. https://doi.org/10.1016/j.jvolgeores.2006.01.003 Williamson, N., Armfield, S. W., & Lin, W. (2011). Forced turbulent foun tain flow behaviour. Journal of Fluid Mechanics, 671, 535–558. https://doi.org/10.1017/S0022112010005872 Wilson, L., Sparks, R. S. J., Huang, T. C., & Watkins, N. D. (1978). The con trol of volcanic eruption column heights by eruption energetics and dynamics. Journal of Geophysical Research, 83, 1829–1836. Wright, J. V., Smith, A. L., Roobol, M. J., Mattioli, G. S., & Fryxell, J. E. (2016). Distal ash hurricane (pyroclastic density current) depos its from a ca. 2000 yr B.P. Plinian style eruption of Mount Pelée Martinique: Distribution, grain-size characteristics, and implica tions for future hazard. Geological Society of America Bulletin, 128, 777–791en_US
dc.description.obiettivoSpecifico4V. Processi pre-eruttivien_US
dc.description.obiettivoSpecifico5V. Processi eruttivi e post-eruttivien_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn0954-4879en_US
dc.relation.eissn1365-3121en_US
dc.contributor.authorDoronzo, Domenico M-
dc.contributor.authorGiordano, Guido-
dc.contributor.authorPalladino, Danilo Mauro-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentDipartimento di Scienze, Università di Roma Tre, Rome, Italyen_US
dc.contributor.departmentDipartimento di Scienze della Terra, Università di Roma La Sapienza, Rome, Italyen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptUniversità degli Studi di Roma Tre-
crisitem.author.deptLa Sapienza Università Roma-
crisitem.author.orcid0000-0002-6866-8870-
crisitem.author.orcid0000-0002-5819-443X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Doronzo et al 2022_Terra Nova.pdfRestricted Paper1.03 MBAdobe PDF
Doronzo(2022).pdfOpen Access accepted article (emb jan-23)14.08 MBAdobe PDFView/Open
Show simple item record

Page view(s)

40
checked on Apr 17, 2024

Download(s)

26
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric