Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/15321
Authors: Zuccarello, Francesco* 
Schiavi, Federica* 
Viccaro, Marco* 
Title: Magma dehydration controls the energy of recent eruptions at Mt. Etna volcano
Journal: Terra Nova 
Series/Report no.: /33 (2021)
Publisher: John Wiley & Sons Ltd
Issue Date: 17-Mar-2021
DOI: 10.1111/ter.12527
URL: https://onlinelibrary.wiley.com/doi/10.1111/ter.12527
Subject Classification04.08. Volcanology 
Abstract: Olivine-hosted melt inclusions (MIs) from tephra of the recent 2013–2018 activity at Mt. Etna were investigated for assessing the chemical evolution of magmas and quantifying their pre-eruptive volatile budget. Microanalyses revealed two types of MIs present in all investigated eruptions; the inclusions, particularly the less evolved ones, appear to have experienced water loss coupled with SiO2 depletion. Restoration of the original SiO2-H2O concentrations provides consistency with the thermodynamic modelling of magma evolution. The two types of MIs developed during crystallization of olivine plus clinopyroxene between 200 and 100 MPa, where magmas also experienced CO2 flushing. Degassing processes at these levels are responsible for water depletion in the melt and diffusive water loss from inclusions. Our data suggest that initial water budget is unchanged all over the last 20 years, reflecting therefore a potential in triggering highly explosive eruptions depending on degassing dynamics under open versus closed system conditions at shallow levels.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
Magma Dehydration Controls Energy of Eruptions.pdfOpen Access published article613.98 kBAdobe PDFView/Open
Show full item record

Page view(s)

10
checked on Jul 2, 2022

Download(s)

4
checked on Jul 2, 2022

Google ScholarTM

Check

Altmetric