Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/15310
DC FieldValueLanguage
dc.date.accessioned2022-02-09T08:17:28Z-
dc.date.available2022-02-09T08:17:28Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/2122/15310-
dc.description.abstractThe eruptive history of Pantelleria has been marked by the eruption of nine peralkaline ignimbrites, with inter-ignimbrite episodes from small, local volcanic centres. New whole-rock geochemical data are presented for seven ignimbrites and used with published data for younger units to track compositional changes with time. From 190 ka, silicicmagmatismwas dominated by comenditic trachyte to comendite compositions, evolving along generally similar liquid lines of descent (LLOD). The final ignimbrite, the Green Tuff ( 46 ka), was tapped from a compositionally zoned pantelleritic upper reservoir to a trachytic mush zone. Younger (20–7 ka) silicic magmatism has been relatively small scale, with compositions similar to the earliest pre-Green Tuff pantelleritic ignimbrite (Zinedi). These data suggest that the comenditic reservoirs may have been emplaced at deeper levels than the pantelleritic reservoirs. While both types of series evolved along similar LLOD dominated by fractionation of alkali feldspar, it is the fractionation of iron that determines whether comendite or pantellerite is produced. The deeper reservoirs were more oxidizing and wetter, thus leading to the crystallization of magnetite and therefore the fractionation of iron.en_US
dc.language.isoEnglishen_US
dc.publisher.nameEdition scientifiquesen_US
dc.relation.ispartofComptes Rendus Geoscienceen_US
dc.relation.ispartofseriesS2/353 (2021)en_US
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectPantelleria, Ignimbrite, Magma reservoirs, Compositional changes with time, Comendite, Pantellerite.en_US
dc.titleEvolution of the magma system of Pantelleria (Italy) from 190 ka to presenten_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber133-149en_US
dc.identifier.doi10.5802/crgeos.50en_US
dc.relation.referencesReferences Andreeva, O. A., Andreeva, I. A., and Yarmolyuk, V. V. (2019). Effect of redox conditions of the evolution of magmas of Changbaishan Tianchi volcano, China–North Korea. Chem. Geol., 508, 225–233. Argnani, A. and Torelli, L. (2001). The Pelagian Shelf and its graben system (Italy/Tunisia). In Ziegler, P. A., Cavassa, W., Robertson, A. H. F., and Crasquin-Soleau, S., editors, Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins, volume 186 of Mem. Mus. Natl. Hist. Nat., pages 529–544. Editions duMus m, Paris. Avanzinelli, R., Bindi, L., Menchetti, S., and Conticelli, S. (2004). Crystallization and genesis of peralkalinemagmas fromPantelleria Volcano, Italy: an integrated petrological and crystal-chemical study. Lithos, 73, 41–69. Bagi   nski, B., Macdonald, R., White, J. C., and Je˙zak, L. (2018). Tuhualite in a peralkaline rhyolitic ignimbrite from Pantelleria, Italy. Eur. J. Mineral., 30, 367–373. Behncke, B., Berrino,G., Corrado,G., and Velardita, R. (2006). Ground deformation and gravity changes on the island of Pantelleria in the geodynamic framework of the Sicily Channel. J. Volcanol. Geotherm. Res., 150, 146–162. Civetta, L., Cornette, Y., Crisci, G.M., Gillot, P. Y., Orsi, G., and Requejo, C. S. (1984). Geology, geochronology and chemical evolution of the island of Pantelleria. Geol.Mag., 121, 541–668. Civetta, L., Cornette, Y., Gillot, P. Y., and Orsi, G. (1988). The eruptive history of Pantelleria (Sicily Channel) in the last 50 ka. Bull. Volcanol., 50, 47– 57. Civetta, L., D’Antonio, M., Orsi, G., and Tilton, G. R. (1998). The geochemistry of volcanic rocks from Pantelleria island, Sicily Channel: petrogenesis and characteristics of the mantle source region. J. Petrol., 39, 1453–1491. Civile, D., Lodolo, E., Tortorici, L., Lanzafame, G., and Brancolini, G. (2008). Relationships between magmatism and tectonics in a continental rift: the Pantelleria Island region (Sicily Channel, Italy). Marine Geol., 251, 32–46. Cornette, Y., Crisci, G. M., Gillot, P. Y., and Orsi, G. (1983). Recent volcanic history of Pantelleria: a new interpretation. J. Volcanol. Geotherm. Res., 17, 361–373. De Guidi, G. and Monaco, C. (2009). Late Holocene vertical deformation along the coast of Pantelleria Island (Sicily Channel, Italy). Quat. Internat., 206, 158–165. Della Vedova, B., Lucazeau, F., Pasquale, V., Pellis, G., and Verdoya, M. (1995). Heat flow in the tectonic provinces crossed by the southern segment of the European Geotraverse. Tectonophysics, 244, 57–74. Di Carlo, I., Rotolo, S., Scaillet, B., Buccheri, V., and Pichavant, M. (2010). Phase equilibrium constraints on pre-eruptive conditions of recent explosive volcanism of Pantelleria Island, Italy. J. Petrol., 51, 2245–2276. Ferla, P. andMeli, C. (2006). Evidence of magma mix- C. R. G oscience, 2021, 353, no S2, 1-17 Nina J. Jordan et al. 15 ing in the ‘Daly Gap’ of alkaline suites: a case study fromthe enclaves of Pantelleria (Italy). J. Petrol., 47, 1467–1502. Gianelli, G. and Grassi, S. (2001). Water-rock interaction in the active geothermal system of Pantelleria, Italy. Chem. Geol., 181, 113–130. Giuffrida, M., Nicotra, E., and Viccaro, M. (2020). Changing modes and rates ofmafic magma supply at Pantelleria (Sicily Channel, Southern Italy): new perspectives on the volcano factory drawn upon olivine records. J. Petrol., 61, 1–22. Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining Geol., 27, 293–305. Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., and Hofmann, A. W. (2007). GeoReM: A new geochemical database for reference materials and isotopic standards. Geostand. Geoanal. Res., 29, 333–338. Johannes, W. and Holtz, F. (1996). The haplogranite system Qz–Ab–Or. In Johannes, W. and Holtz, F., editors, Petrogenesis and Experimental Petrology of Granitic Rocks, pages 18–57. Springer, London. Jordan, N. J. (2014). Pre-Green Tuff explosive eruptive history, petrogenesis and proximal-distal tephra correlations of a peralkaline caldera volcano: Pantelleria, Italy. PhD thesis, University of Leicester, UK. Jordan, N. J., Rotolo, S. G., Williams, R., Speranza, F., McIntosh, W. C., Branney, M. J., and Scaillet, S. (2018). Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano. J. Volcanol. Geotherm. Res., 349, 47–73. Kelsey, C. H. (1965). Calculation of the C.I.P.W. norm. Mineral.Mag., 34, 276–282. Landi, P. and Rotolo, S. G. (2015). Cooling and crystallization recorded in trachytic enclaves hosted in pantelleritic magmas (Pantelleria, Italy): Implications for pantellerite genesis. J. Volcanol. Geotherm. Res., 301, 169–179. Lanzo, G., Landi, P., and Rotolo, S. G. (2013). Volatiles in pantellerite magmas: A case study of the Green Tuff Plinian eruption (Island of Pantelleria, Italy). J. Volcanol. Geotherm. Res., 262, 153–163. LeMaitre, R.W. (1976). Some problems of the projection of chemical data into mineralogical classifications. Contrib.Mineral. Petrol., 56, 181–189. Le Maitre, R. W., editor (2002). Igneous Rocks, a Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcomission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge, UK, 2nd edition. 236 p. Liszewska, K. M., White, J. C., Macdonald, R., and Bagi   nski, B. (2018). Compositional and thermodynamic variability in a stratified magma chamber: Evidence from the Green Tuff Ignimbrite (Pantelleria, Italy). J. Petrol., 59, 2245–2272. Macdonald, R. (1974). Nomenclature and petrochemistry of the peralkaline oversaturated extrusive rocks. Bull. Volcanol., 38, 498–516. Mahood, G. A. andHildreth,W. (1986). Geology of the peralkaline volcano at Pantelleria, Strait of Sicily. Bull. Volcanol., 48, 143–172. Mattia, M., Bonaccorso, A., and Guglielmino, F. (2007). Ground deformations in the Island of Pantelleria (Italy): Insights into the dynamics of the current intereruptive period. J. Geophys. Res., 112, article no. B11406. Mungall, J. E. and Martin, R. F. (1995). Petrogenesis of basalt-comendite and basalt-pantellerite series, Terceira, Azores, and some implications for the origin of ocean-island rhyolites. Contrib. Mineral. Petrol., 119, 43–55. Neave, D. A. (2020). Chemical variability in peralkaline magmas and magma reservoirs: insights from the Khaggiar lava flow, Pantelleria, Italy. Contrib. Mineral. Petrol., 175, article no. 39. Neave, D. A., Fabbro, G., Herd, R. A., Petrone, C. M., and Edmonds, M. (2012). Melting, differentiation and degassing at the Pantelleria volcano, Italy. J. Petrol., 53, 637–663. Nicholls, J., Carmichael, I. S. E., and Stormer Jr., J. C. (1971). Silica activity and Ptotal in igneous rocks. Contrib.Mineral. Petrol., 33, 1–20. Parker,D. F. andWhite, J. C. (2008). Large-scale alkalic magmatism associated with the Buckhorn caldera, Trans-Pecos Texas, USA: Comparison with Pantelleria, Italy. Bull. Volcanol., 70, 403–415. Perugini, D., Poli, G., and Prosperini, N. (2002). Morphometric analysis of magmatic enclaves: a tool for understanding magma vesiculation and ascent. Lithos, 61, 225–235. C. R. G oscience, 2021, 353, no S2, 1-17 16 Nina J. Jordan et al. Romano, P., And jar, J., Scaillet, B., Romengo, N., Di Carlo, I., and Rotolo, S. G. (2018). Phase equilibria of Pantelleria trachytes (Italy): constraints on pre-eruptive conditions and on the metaluminous to peralkaline transition in silicic magmas. J. Petrol., 59, 559–588. Romano, P., Scaillet, B., White, J. C., And jar, J., Di Carlo, I., and Rotolo, S. G. (2020). Experimental and thermodynamic constraints on mineral equilibrium in pantelleritic magmas. Lithos, 376–377, article no. 105793. Romano, P., White, J. C., Ciulla, A., Di Carlo, I., D’Oriano, C., Landi, P., and Rotolo, S. G. (2019). Volatiles and trace elements content in melt inclusions from the zoned Green Tuff ignimbrite (Pantelleria, Sicily): petrological inferences. Ann. Geophys., 62, article no. VO09. Romengo, N., Landi, P., and Rotolo, S. G. (2012). Evidence of basaltic magma intrusions in a trachytic magma chamber at Pantelleria (Italy). Period.Mineral., 81, 163–178. Ronga, F., Lustrino, M., Marzoli, A., and Melluso, L. (2009). Petrogenesis of a basalt-comenditepantellerite rock suite: the Boseti volcanic complex (main Ethiopian rift). Mineral. Petrol., 98, 227–243. Rotolo, S. G., La Felice, S.,Mangalaviti, A., and Landi, P. (2007). Petrology and geochemistry of the recent ( 25 ka) silicic volcanism at Pantelleria island. Boll. Soc. Geol. Ital., 126, 191–208. Rotolo, S. G., Scaillet, S., La Felice, S. L., and Vita- Scaillet, G. (2013). A revision of the structure and stratigraphy of pre-Green Tuff ignimbrites at Pantelleria (Strait of Sicily). J. Volcanol. Geotherm. Res., 250, 61–74. Rotolo, S. G., Scaillet, S., Speranza, F., White, J. C., Williams, R., and Jordan, N. J. (2021). Volcanological evolution of Pantelleria Island (Strait of Sicily) peralkaline volcano: a review. C. R. Geosci. this issue, https://doi.org/10.5802/crgeos.51. Rotolo, S. G. and Villa, L. M. (2001). 39Ar–40Ar dating of an alkali-granite enclave from Pantelleria. Period. Mineral., 70, 269–275. Salters, V. J. M. and Stracke, A. (2004). Composition of depleted mantle. Geochem. Geophys. Geosyst., 5, article no. Q05004. Scaillet, S., Rotolo, S. G., La Felice, S., and Vita- Scaillet, G. (2011). High-resolution 40Ar/39Ar chronostratigraphy of the post-caldera ( 20 ka) volcanic activity at Pantelleria, Sicily Strait. Earth Planet. Sci. Lett., 309, 280–290. Scaillet, S., Vita-Scaillet, G., and Rotolo, S. G. (2013). Millenial-scale phase relationships between icecore and Mediterranean marine records: insights from high-precision 40Ar/39Ar dating of the Green Tuff of Pantelleria, Sicily Strait. Quat. Sci. Rev., 78, 141–154. Speranza, F., Di Chiara, A., and Rotolo, S. G. (2012). Correlation of welded ignimbrites on Pantelleria (Strait of Sicily) using paleomagnetism. Bull. Volcanol., 74, 341–357. Stabile, P., Giuli, G., Cicconi, M. R., Paris, E., Trapananti, A., and Behrens, H. (2017). The effect of oxygen fugacity and Na/(Na+K) ratio on iron speciation in pantelleritc glasses. J. Non-Cryst. Solids, 478, 65–74. Toplis, M. J. and Carroll,M. R. (1995). An experimental study of the influence of oxygen fugacity on Fe- Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. J. Petrol., 36, 1137–1170. Tuttle, O. F. and Bowen, N. L. (1958). Origin of granite in light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O, volume 74 of GSA Memoirs. Geological Society of America. Verzhbitsky, E. V. and Kononov, M. V. (2003). Heat flow and origin of the lithosphere in the central Mediterranean region. Geotectonics, 37, 328–336. White, J. C., Neave, D. A., Rotolo, S. G., and Parker, D. F. (2020). Geochemical constraints on basalt petrogenesis in the Strait of Sicily Rift Zone (Italy): Insights into the importance of short lengthscale mantle heterogeneity. Chem. Geol., 545, article no. 119650. White, J. C., Parker, D. F., and Ren, M. (2009). The origin of trachyte and pantellerite from Pantelleria, Italy: Insights from major element, trace element, and thermodynamic modelling. J. Volcanol. Geotherm. Res., 179, 33–55. White, J. C., Ren,M., and Parker,D. F. (2005). Variation in mineralogy, temperature, and oxygen fugacity in a suite of strongly peralkaline lavas and tuffs, Pantelleria, Italy. Can.Mineral., 43, 1331–1347. Wilke, S., Holtz, F., Neave, D. A., and Almeev, R. (2017). The effect of anorthite content and wa- C. R. G oscience, 2021, 353, no S2, 1-17 Nina J. Jordan et al. 17 ter on quartz-feldspar cotectic compositions in the rhyolitic system and implications for geobarometry. J. Petrol., 58, 789–818. Williams, R., Branney, M. J., and Barry, T. L. (2014). Temporal and spatial evolution of a waxing then waning catastrophic density current revealeden_US
dc.description.obiettivoSpecifico3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanicien_US
dc.description.journalTypeJCR Journalen_US
dc.relation.eissn1778-7025en_US
dc.contributor.authorJordan, Nina J.-
dc.contributor.authorWhite, John Charles-
dc.contributor.authorMacDonald, Ray-
dc.contributor.authorRotolo, Silvio Giuseppe-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptEastern Kentucky University USA-
crisitem.author.deptUniversità degli Studi di Palermo-
crisitem.author.orcid0000-0002-8576-766X-
crisitem.author.orcid0000-0001-7523-1338-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Jordan et al 2021.pdfOpen Access published article2.33 MBAdobe PDFView/Open
Show simple item record

Page view(s)

23
checked on Apr 27, 2024

Download(s)

16
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric