Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/15135
DC FieldValueLanguage
dc.date.accessioned2021-12-16T07:38:02Z-
dc.date.available2021-12-16T07:38:02Z-
dc.date.issued2014-01-06-
dc.identifier.urihttp://hdl.handle.net/2122/15135-
dc.description.abstractDiffusive gradients in thin fi lms (DGT) have been tested in CO2-rich, metal-bearing fl uids from springs in the Campo de Calatrava region in Central Spain, to assess their applicability as a monitoring tool in onshore CO2 storage projects. These fi lms are capable of adsorbing metals and recording changes in their concentration in water, sediments, and soils. Considering that CO2 dissolution promotes metal solubilization and transport, the use of these fi lms could be valuable as a monitoring tool of early leakage. A number of DGT have been deployed in selected springs with constant metal concentration. The studied waters show high concentrations of Fe, as high as 1 × 104 μg·L–1, Ni, Co, Zn, Cu, and Mn. Comparing re-calculated metal concentration in DGT with metal water concentration, two different metal behaviors are observed: (i) metals with sorption consistent with the metal concentration (i.e. plotting close to the 1:1 line in a [Me]DGT: [Me]water plot), and (ii) metals with non–linear sorption, with some data showing metal enrichment in DGT compared with the concentration in water. Metals in the fi rst group include Fe, Mn, Co, Ni, and U, and metals in the second group are Zn, Pb, Cr, Cu, and Al. From this research, it is concluded that the metals in the fi rst group can be used to monitor potential leakage by using DGT, providing effective leakage detection even considering low variations of concentrations, episodic metal release, and reducing costs compared with conventional, periodic water sampling.en_US
dc.language.isoEnglishen_US
dc.publisher.nameWileyen_US
dc.relation.ispartofGreenhouse Gases: Science and Technologyen_US
dc.relation.ispartofseries/4 (2014)en_US
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectCampo de Calatravaen_US
dc.subjectCO2 storage and leakageen_US
dc.subjectDGTen_US
dc.subjectmetal leakageen_US
dc.subjectmetal transporten_US
dc.subjecttrace metalsen_US
dc.titleUse of diffusive gradients in thin films (DGT) as an early detection tool of low-intensity leakage from CO2storageen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber163-175en_US
dc.subject.INGV03.04. Chemical and biologicalen_US
dc.subject.INGV05.04. Instrumentation and techniques of general interesten_US
dc.identifier.doi10.1002/ghg.1383en_US
dc.relation.references1. European Commission, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committe and the Committe of the Regions on the Future of Carbon Capture and Storage in Europe. EC, Brussels. 2. Rempel KU, Liebscher A, Heinrich W and Schettler G, An experimental investigation of trace element dissolution in carbon dioxide: Applications to the geological storage of CO2. Chem Geol289:224–234 (2011). 3. Zheng L, Apps JA, Spycher N, Birkholzer JT, Kharaka YK, James Thordsen J et al., Geochemical modeling of changes in shallow groundwater chemistry observed during the MSU-ZERT CO2 injection experiment. Int J Greenhouse Gas Control60:273–284 (2011). 4. Czernichowski-Lauriol I, Rochelle C, Gaus I, Azaroual M, Pearce J and Durst P, Geochemical interactions between CO2, pore-waters and reservoir rocks: lessons learned from laboratory experiments, fi eld studies and computer simula-tions, in Advances in the Geological Storage of Carbon Dioxide: NATO Science SeriesIV, ed by Lombardi S, Altunina LK and Beaubien SE. Earth Environ Sci65:141–157 (2006). 5. Kharaka YK, Cole DR, Hovorka SD, Gunter WD, Knauss KG and Freifeld BM, Gas–water–rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins. Geology34:577–580 (2006). 6. Kharaka YK, Thordsen JJ, Hovorka SD, Nance HS, Cole DR, Phelps TJ and Knauss KG, Potential environmental issues of CO2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine pilot test, Texas, USA. Appl Geochem24:110 6 –1112 ( 20 0 9 ). 7. Wigand M, Carey JW, Schü tt H, Spangenberg E and Erzinger J, Geochemical effects of CO2 sequestration in sandstones. under simulated in situ conditions of deep saline aquifers. Appl Geochem23:2735–2745 (2008). 8. Fischer S, Liebscher A, Wandrey M and CO2SINK Group. CO2–brine–rock interaction - fi rst results of long-term exposure experiments at in situ P–T conditions of the Ketzin CO2 reservoir. Chem Erde70(3):155–164 (2010). 9. Grivé M, Duro L and Bruno J, Fe(III) mobilization by carbonate in low temperature environments: Study of the solubility of ferrihydrite in carbonate media and the formation of Fe(III) carbonate complexes. Submitted to Geoch. Cosmochim Acta(2013). 10. Bruno J, Grandia F and Vilanova E, Trace element behaviour in connection to the geological storage of CO2. Lessons from natural analogues. Abstracts of the Goldschmidt Conference 2009, Davos (Switzerland). Geochim Cosmochim Acta73(13):A167 (2009).11. Zhang H and Davison W, Performance characteristics of diffusion gradients in thin-fi lms for the measurement of trace-metals in aqueous-solution. Anal Chem67:3391–3400 (1995).12. Ardelan MV and Steinnes E, Changes in mobility and solubility of the redox sensitive metals Fe, Mn and Co at the seawater-sediment interface following CO2 seepage. Biogeosciences 7:569–583 (2010).13. Ardelan MV, Sundeng K, Slinde GA, Gjøsund NS, Nordtug T, Olsen AJ and Torp TA, Impact of possible CO2 seepage from sub-seabed storage on trace elements mobility and bacterial distribution at sediment-water interface. Energ Procedia 23:449–461 (2012).14. DGT Research Ltd, DGT-for measurements in water, soils and sediments: Users guide for DGT technique. DGT Research Ltd, Lancaster, UK (2003).15. Gimpel J, Zhang H, Hutchinson W and Davison W, Effect of solution composition, fl ow and deployment time on the measurement of trace metals by the diffusive gradient in thin fi lms technique. Anal Chim Acta448:93–103. (2001)16. INAP (International Network for Acid Prevent), Diffusive gradients in thin-fi lm (DGT). A technique for determining bioavailable metal concentration. INAP (2002).17. Chelex 100 and Chelex 20 Chelating Ion, Exchange resin instruction manual. Bio-Rad Laboratories, Hercules, CA (2000).18. Piqué A, Grandia F and Canals A, Processes releasing arsenic to groundwater in the Caldes de Malavella geothermal area, NE Spain. Water Res44:5618–5630 (2010).19. Wilson M and Downes H, Tertiary—quaternary extension-related alkaline magmatism in Western and Central Europe. J Petrol32(4):811–849 (1991).20. Ancochea E, Huertas MJ, Cantagrel JM, Coello J, Fúster JM, Arnaud N and Ibarrola E, Evolution of the Cañadas edifi ce and its implications for the origin of the Cañadas Caldera (Tenerife, Canary Islands). J Volcanol Geoth Res88:177–199 (1999).21. Davison W and Zhang H, In situ speciation measurements of trace components in natural waters using thin-fi lm gels. Nature367:546–548 (1994).22. Dunn RJK, Teasdale PR, Warnken J and Schlich RR, Evaluation of the diffusive gradient in a thin fi lm technique for monitoring trace metal concentration in estaurine waters. Environ Sci Technol37:2794–2800 (2003).en_US
dc.description.obiettivoSpecifico6A. Geochimica per l'ambiente e geologia medicaen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.eissn2152-3878en_US
dc.contributor.authorAgnelli, Marco-
dc.contributor.authorGrandia, Fidel-
dc.contributor.authorCredoz, Anthony-
dc.contributor.authorGasparini, Andrea-
dc.contributor.authorBruno, Jordi-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptAmphoS21 Consulting S.L.-
crisitem.author.deptValgo Petit-Couronne-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptAmphos21 Consulting S.L-
crisitem.author.orcid0000-0002-1474-0275-
crisitem.author.orcid0000-0002-2264-9025-
crisitem.author.orcid0000-0001-6831-6093-
crisitem.author.orcid0000-0001-7472-1001-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Greenhouse Gases - 2013 - Agnelli - Use of diffusive gradients in thin films DGT as an early detection tool of.pdfRestricted Paper1.86 MBAdobe PDF
Show simple item record

Page view(s)

75
checked on Apr 24, 2024

Download(s)

1
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric