Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1459
DC FieldValueLanguage
dc.contributor.authorallCaserta, A.; Istituto Nazionale di Geofisica, Roma, Italyen
dc.date.accessioned2006-08-02T13:14:03Zen
dc.date.available2006-08-02T13:14:03Zen
dc.date.issued1998-10en
dc.identifier.urihttp://hdl.handle.net/2122/1459en
dc.description.abstractThis paper deals with the antiplane wave propagation in a 2D heterogeneous dissipative medium with complex layer interfaces and irregular topography. The initial boundary value problem which represents the viscoelastic dynamics driving 2D antiplane wave propagation is formulated. The discretization scheme is based on the finite-difference technique. Our approach presents some innovative features. First, the introduction of the forcing term into the equation of motion offers the advantage of an easier handling of different inputs such as general functions of spatial coordinates and time. Second, in the case of a straight-line source, the symmetry of the incident plane wave allows us to solve the problem of oblique incidence simply by rotating the 2D model. This artifice reduces the oblique incidence to the vertical one. Third, the conventional rheological model of the generalized Maxwell body has been extended to include the stress-free boundary condition. For this reason we solve explicitly the stress-free boundary condition, not following the most popular technique called vacuum formalism. Finally, our numerical code has been constructed to model the seismic response of complex geological structures: real geological interfaces are automatically digitized and easily introduced in the input model. Three numerical applications are discussed. To validate our numerical model, the first test compares the results of our code with others shown in the literature. The second application rotates the input model to simulate the oblique incidence. The third one deals with a real high-complexity 2D geological structure.en
dc.format.extent4395580 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofseries4/41 (1998)en
dc.subjectseismic wave propagationen
dc.subjectnumerical methoden
dc.subjectdissipative mediaen
dc.titleA time domain finite-difference technique for oblique incidence of antiplane waves in heterogeneous dissipative mediaen
dc.typearticleen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.subject.INGV05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneousen
dc.subject.INGV05. General::05.06. Methods::05.06.99. General or miscellaneousen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorCaserta, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica, Roma, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-3469-9644-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
Appears in Collections:Annals of Geophysics
Manuscripts
Files in This Item:
File Description SizeFormat
09 caserta.pdf4.29 MBAdobe PDFView/Open
Show simple item record

Page view(s)

144
checked on Apr 20, 2024

Download(s) 50

144
checked on Apr 20, 2024

Google ScholarTM

Check