Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1454
DC FieldValueLanguage
dc.contributor.authorallLosito, G.; Dipartimento di Ingegneria Civile, Universitá di Firenze, Italyen
dc.contributor.authorallMuschietti, M.; Dipartimento di Ingegneria Civile, Universitá di Firenze, Italyen
dc.date.accessioned2006-08-02T13:13:20Zen
dc.date.available2006-08-02T13:13:20Zen
dc.date.issued1998-08en
dc.identifier.urihttp://hdl.handle.net/2122/1454en
dc.description.abstractThis article discusses the problem of the mineralogical-petrographic interpretation of the "anomalous" conductive layer inside the lithosphere, which has resulted from electromagnetic deep soundings. Three situations can be found: 1) a resistivity of less than 1 Ω ·m in the Very High Conductivity Layer (VHCL); 2) a resistivity of 1÷100 Ω ·m in the High Conductivity Layer (HCL); 3) a resistivity of 102 ÷ 103 Ω ·m in the Continental Lower Crust (CLC). We have focused our attention on the HCL because of its widespread distribution. Most authors attribute HCL conductivity to the presence of salt water or graphitic materials, that are uniformly and continuously distributed inside rocks. Other hypotheses from the literature are the presence of oxides and/or sulphides, rock melting, and brine-bearing rocks. Each one of these elements can cause high electrical conductivity, depending on the petrophysical conditions, but much discussion involves the necessary physical continuity of the conductive elements. We forward one more hypothesis as follows. By means of experiments on rock samples from different geographical and deep areas, under simulated in situ physical conditions (e.g., pressure, temperature, saturation), we have found resistivity values similar to the in situ ones. Chemical, mineralogical, and petrographic analyses have shown the presence of large amounts of phyllosilicate minerals, such as illite. These minerals act in two ways: they produce the physical continuity of associated conductive minerals, and they decrease the resistivity of rocks. This second hypothesis is consistent with both the very widespread diffusion of illite inside the Earth's crust, and with the good conductivity found in depth.en
dc.format.extent3998952 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofseries3/41 (1998)en
dc.subjectElectrical anomalyen
dc.subjectlithosphere resistivityen
dc.subjecthigh conductivity layeren
dc.subjectphyllosilicateen
dc.subjectgraphiteen
dc.titleIs the illite group the cause of high electrical conductivityin certain lithospheric areas?en
dc.typearticleen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorLosito, G.en
dc.contributor.authorMuschietti, M.en
dc.contributor.departmentDipartimento di Ingegneria Civile, Universitá di Firenze, Italyen
dc.contributor.departmentDipartimento di Ingegneria Civile, Universitá di Firenze, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Ingegneria Civile, Universitá di Firenze, Italy-
crisitem.author.deptDipartimento di Ingegneria Civile, Universitá di Firenze, Italy-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
10 losito.pdf3.91 MBAdobe PDFView/Open
Show simple item record

Page view(s)

105
checked on Apr 24, 2024

Download(s) 50

257
checked on Apr 24, 2024

Google ScholarTM

Check