Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/14369
Authors: Sorgente, Roberto* 
Di Maio, Antonia* 
Pessini, Federica* 
Ribotti, Alberto* 
Bonomo, Sergio* 
Perilli, Angelo* 
Alberico, Ines* 
Lirer, Fabrizio* 
Cascella, Antonio* 
Ferraro, Luciana* 
Title: Impact of Freshwater Inflow From the Volturno River on Coastal Circulation
Journal: Frontiers in Marine Science 
Series/Report no.: / 7 (2020)
Publisher: MDPI
Issue Date: 3-Jun-2020
DOI: 10.3389/fmars.2020.00293
URL: https://www.frontiersin.org/articles/10.3389/fmars.2020.00293/full
Abstract: The coastal area located in front of the Volturno river estuary (the Gulf of Gaeta, central-eastern Tyrrhenian Sea) was synoptically sampled in seven surveys between June 2012 and October 2014. Vertical profiles of temperature and salinity were acquired on a high-resolution nearly-regular grid in order to describe the spatial and temporal variability of the characteristics of the waters. Moreover, the three-dimensional velocity field associated with each survey was computed through the full momentum equations of the Princeton Ocean Model to provide a first assessment of the steady-state circulation at small scale. The data analysis shows the entire water column to be characterized by an evident thermal cycle and a vertical thermohaline structure, dominated by three types of waters: the freshwater of the river, the saltier coastal Tyrrhenian waters, and transitional waters originating from their mixing. The inflow of freshwater strongly affects the density distribution, leading to strong temporal variability in the upper layer. Its impact is more evident in winter, sometimes inducing a vertical temperature inversion. In case of rainy events, and also in conditions of high vertical temperature stratification, it forms a surface-trapped layer with high density gradients. These and wind forcing contribute to the formation of small-scale shallow features, such as longshore currents and cyclonic and anticyclonic eddies. The latter influence the vertical stratification and modify the coastal circulation, preserving the transitional waters from the surrounding saltier ones.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
fmars-07-00293.pdf3.53 MBAdobe PDFView/Open
Show full item record

WEB OF SCIENCETM
Citations

1
checked on Feb 10, 2021

Page view(s)

196
checked on Apr 24, 2024

Download(s)

19
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric