Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/14133
DC FieldValueLanguage
dc.date.accessioned2021-01-05T13:28:04Z-
dc.date.available2021-01-05T13:28:04Z-
dc.date.issued2020-
dc.identifier.urihttp://hdl.handle.net/2122/14133-
dc.description.abstractIn December 2018, Etna volcano experienced one of the largest episodes of unrest since the installation of geophysical monitoring networks in 1970. The unrest culminated in a short eruption with a small volume of lava erupted, a significant seismic crisis and deformation of the entire volcanic edifice of magnitude never recorded before at Mount Etna. Here we describe the evolution of the 2018 eruptive cycle from the analysis of seismic and geodetic data collected in the months preceding, during, and following the intrusion. We model the space‐time evolution of high‐rate deformation data starting from the active source previously identified from deformation data and the propagation of seismicity in a 3‐D velocity model. The intrusion model suggests emplacement of two dikes: a smaller dike located beneath the eruptive fissure and a second, deeper dike between 1 and 5 kmbelow sea level that opened ~2 m. The rise and eruption of magma from the shallower dike did not interrupt the pressurization of a long‐lasting deeper reservoir (~6 km) that induced continuous inflation and intense deformation of the eastern flank. Shortly after the intrusion, on 26 December 2018, aML4.8 earthquake occurred near Pisano, destroying buildings and roads in two villages. We propose a time‐dependent intrusion model that supports the hypothesis of the inflation inducing flank deformation and that this process has been active since September 2018.en_US
dc.language.isoEnglishen_US
dc.publisher.nameWiley Aguen_US
dc.relation.ispartofGeochemistry Geophysics Geosystemsen_US
dc.relation.ispartofseries9/21 (2020)en_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subject2018 Mount Etna Eruption, time‐dependent intrusion model, modelling of high‐rate deformationsen_US
dc.titleCombined Seismic and Geodetic Analysis Before, During, and After the 2018 Mount Etna Eruptionen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumbere2020GC009218en_US
dc.subject.INGV04.08. Volcanologyen_US
dc.subject.INGV04.03. Geodesyen_US
dc.subject.INGV04.06. Seismologyen_US
dc.identifier.doi10.1029/2020GC009218en_US
dc.relation.referencesAlparone, S., Barberi, G., Cocina, O., Giampiccolo, E., Musumeci, C., & Patanè, D. (2012). Intrusive mechanism of the 2008–2009 Mt. Etna eruption: Constraints by tomographic images and stress tensor analysis. Journal of Volcanology and Geothermal Research, 229, 50–63. https://doi.org/10.1016/j.jvolgeores.2012.04.001 Anderson, K., & Segall, P. (2013). Bayesian inversion of data from effusive volcanic eruptions using physics‐based models: Application to Mount St. Helens 2004–2008. Journal of Geophysical Research: Solid Earth, 118, 2017–2037. https://doi.org/10.1002/jgrb.50169 Bock, Y., Nikolaidis, R., De Jonge, P. J., & Bevis, M. (2000). Instantaneous resolution of crustal motion at medium distances with the Global Positioning System. Journal of Geophysical Research, 105(28), 223–28,254. https://doi.org/10.1029/2000JB900268 Bonaccorso, A. (2001). Mt Etna volcano: Modelling of ground deformation patterns of recent eruptions and considerations on the associated precursors. Journal of Volcanology and Geothermal Research, 109, 99–108. https://doi.org/10.1016/S0377-0273(00)00306-1 Bonaccorso, A., D'Amico, S., Mattia, M., & Patanè, D. (2004). Intrusive mechanisms at Mt. Etna forerunning the July–August 2001 eruption from seismic and ground deformation data. Pure and Applied Geophysics, 161(7), 1469–1487. https://doi.org/10.1007/s00024- 004-2515-4 Bonforte, A., Guglielmino, F., Coltelli, M., Ferretti, A., & Puglisi, G. (2011). Structural assessment of Mount Etna volcano from Permanent Scatterers analysis. Geochemistry, Geophysics, Geosystems, 12, Q02002. https://doi.org/10.1029/2010GC003213 Branca, S., Coltelli, M., Groppelli, G., & Lentini, F. (2011). Geological map of Etna volcano, 1:50,000 scale. Italian Journal of Geosciences, 130(3), 265–291. https://doi.org/10.3301/IJG.2011.15 Bruno, V., Mattia, M., Montgomery‐Brown, E., Rossi, M., & Scandura, D. (2017). Inflation leading to a slow slip event and volcanic unrest at Mount Etna in 2016: Insights from CGPS data. Geophysical Research Letters, 44, 12,141–12,149. https://doi.org/10.1002/2017GL075744 Bruno, V., Mattia, M., Aloisi, M., Palano, M., Cannavò, F., & Holt, W. E. (2012). Ground deformations and volcanic processes as imaged by CGPS data at Mt. Etna (Italy) between 2003 and 2008. Journal of Geophysical Research, 117, B07208. https://doi.org/10.1029/ 2011JB009114 Calvari, S., Bilotta, G., Bonaccorso, A., Caltabiano, T., Cappello, A., Corradino, C., et al. (2020). The VEI 2 Christmas 2018 Etna eruption: A small but intense eruptive event or the starting phase of a larger one? Remote Sensing, 12(6), 905. https://doi.org/10.3390/rs12060905 Cervelli, P. (2013). Analytical expressions for deformation from an arbitrarily oriented spheroid in a half‐space. Abstract V44C‐06 presented at AGU Fall Meeting, 2013 San Francisco, CAL. Civico, R., Pucci, S., Nappi, R., Azzaro, R., Villani, F., Pantosti, D., et al. (2019). Surface ruptures following the 26 December 2018, Mw 4.9, Mt. Etna earthquake, Sicily (Italy) EMERGEO Working Group (Etna 2018). Journal of Maps, 15, 831–837. https://doi.org/10.1080/ 17445647.2019.1683476 De Novellis, V., Atzori, S., De Luca, C., Manzo, M., Valerio, E., Bonano, M., et al. (2019). DInSAR analysis and analytical modeling of Mount Etna displacements: The December 2018 volcano‐tectonic crisis. Geophysical Research Letters, 46, 5817–5827. https://doi.org/ 10.1029/2019GL082467 Desmarais, E. K., & Segall, P. (2007). Transient deformation following the 30 January 1997 dike intrusion at Kīlauea volcano Hawai‘i. Bulletin of Volcanology, 69(4), 353–363. https://doi.org/10.1007/s00445-006-0080-7 Giampiccolo, E., D'Amico, S., Patanè, D., & Gresta, S. (2007). Attenuation and source parameters of shallow microearthquakes at Mt. Etna volcano, Italy. Bulletin of the Seismological Society of America, 97(1B), 184–197. https://doi.org/10.1785/0120050252 Hansen, P. C. (1992). Analysis of discrete ill‐posed problems by means of the L‐curve. SIAM Review, 34(4), 561–580. https://doi.org/10.1137/ 1034115 Herring, T. A., Floyd, M. A., King, R. W., & McClusky, S. C. (2015a). GLOBK reference manual. In Global Kalman filter VLBI and GPS analysis program (pp. 1–95). Cambridge, MA: Massachusetts Institute of Technology. Herring, T. A., King, R. W., Floyd, M. A., & McClusky, S. C. (2015b). GAMIT reference manual. In GPS analysis at MIT (pp. 1–168). Cambridge, MA: Massachusetts Institute of Technology. INGV‐OE Gruppo Analisi Dati Sismici (2019). (http://sismoweb.ct.ingv.it/maps/eq_maps/sicily/ catalogue.php) King, G. C. P., & Devès,M. H. (2015). Fault interaction, earthquake stress changes and the evolution of seismicity, in Schubert G 2015 Treatise on Geophysics (Second ed., Vol. 4, pp. 243–271). Oxford: Elsevier. Mattia, M., Bruno, V., Caltabiano, T., Cannata, A., Cannavò, F., D'Alessandro, W., et al. (2015). A comprehensive interpretative model of slow slip events on Mt. Etna's eastern flank. Geochemistry, Geophysics, Geosystems, 16, 635–658. https://doi.org/10.1002/2014GC005585 Mattia, M., Rossi, M., Guglielmino, F., Aloisi, M., & Bock, Y. (2004). The shallow plumbing system of Stromboli Island as imaged from 1 Hz instantaneous GPS positions. Geophysical Research Letters, 31, L24610. https://doi.org/10.1029/2004GL021281 Montgomery‐Brown, E. K., Sinnett, D. K., Larson, K. M., Poland, M. P., Segall, P., & Miklius, A. (2011). Spatiotemporal evolution of dike opening and décollement slip at Kīlauea Volcano, Hawai‘i. Journal of Geophysical Research, 116, B03401. https://doi.org/10.1029/ 2010JB007762 Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half‐space. Bulletin of the Seismological Society of America, 75, 1135–1154. https://doi.org/10.1785/0120020136 Palano, M., Rossi, M., Cannavò, F., Bruno, V., Aloisi, M., Pellegrino, D., et al. (2010). Etna geodetic reference frame for Mt. Etna GPS networks. Annales de Geophysique, 53(4), 49–57. https://doi.org/10.4401/ag-4879 Patanè, D., Aliotta, M., Cannata, A., Cassisi, C., Coltelli, M., Di Grazia, G., et al. (2011). Interplay between tectonics and Mount Etna's volcanism: Insights into the geometry of the plumbing system. In U. Schattner (Ed.), New frontiers in tectonic research—At the midst of plate convergence (Chap. 4, pp. 73–104). IntechOpen. https://doi.org/10.5772/23503 Patanè, D., Barberi, G., Cocina, O., De Gori, P., & Chiarabba, C. (2006). Time‐resolved seismic tomography detects magma intrusions at Mount Etna. Science, 313(5788), 821–823. https://doi.org/10.1126/science.1127724 Patanè, D., Barberi, G., Scarfì, L., & Coltelli, M. (2021). Discovery of scattered subvolcanic complexes that feeded the volcanism in the area of Etna. Cities on volcanoes. Heraklion Crete: Paper presented at IAVCEI Conference. Patanè, D., Cocina, O., Falsaperla, S., Privitera, E., & Spampinato, S. (2004). Mt. Etna volcano: A seismological framework. In S. Calvari, A. Bonaccorso, M. Coltelli, C. Del Negro, & S. Falsaperla (Eds.), The Mt. Etna Volcano (Vol. 143, pp. 147–165), Washington, D.C.: AGU. Patanè, D., De Gori, P., Chiarabba, C., & Bonaccorso, A. (2003). Magma ascent and the pressurization of Mt. Etna's volcanic system. Science, 299(5615), 2061–2063. https://doi.org/10.1126/science.1080653 Patanè, D., & Privitera, E. (2001). Seismicity related to 1989 and 1991–1993 Mt. Etna (Italy) eruptions: Kinematic constraints by fault solution analysis. Journal of Volcanology and Geothermal Research, 109, 77–98. https://doi.org/10.1016/s0377-0273(00)00305-x Reasenberg, P. A., & Oppenheimer, D. (1985). FPFIT, FPPLOT and FPPAGE; Fortran computer programs for calculating and displaying earthquake fault‐plane solutions, U.S. Geological Survey Open‐File Report 85–739 (p. 109). U.S. Geological Survey. Segall, P., & Matthews, M. (1997). Time dependent inversion of geodetic data. Journal of Geophysical Research, 102(B10), 22,391–22,409. https://doi.org/10.1029/97JB01795 Yang, X., Davis, P., & Dieterich, J. (1988). Deformation from inflation of a dipping finite prolate spheroid in an elastic half‐space as a model for volcanic stressing. Journal of Geophysical Research, 93, 4249–4257. Zhang, H., Thurber, C., & Bedrosian, P. (2009). Joint inversion for Vp, Vs, and Vp/Vs at SAFOD, Parkfield California. Geochemistry, Geophysics, Geosystems, 10, Q11002. https://doi.org/10.1029/2009GC002709.en_US
dc.description.obiettivoSpecifico2V. Struttura e sistema di alimentazione dei vulcanien_US
dc.description.journalTypeJCR Journalen_US
dc.contributor.authorMattia, Mario-
dc.contributor.authorBruno, Valentina-
dc.contributor.authorMontgomery-Brown, Emily-
dc.contributor.authorPatanè, Domenico-
dc.contributor.authorBarberi, Graziella-
dc.contributor.authorColtelli, Mauro-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen_US
dc.contributor.departmentCascades Volcano Observatory, United States GeologicalSurvey, Vancouver, WA, USAen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptCalifornia Volcano Observatory, United States Geological Survey, Menlo Park, CA, USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0001-6220-4947-
crisitem.author.orcid0000-0001-7803-5404-
crisitem.author.orcid0000-0001-6787-2055-
crisitem.author.orcid0000-0001-9410-5126-
crisitem.author.orcid0000-0002-8273-0458-
crisitem.author.orcid0000-0001-7868-3946-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Mattia et al., 2020.pdf2.09 MBAdobe PDF
Show simple item record

Page view(s)

812
checked on Apr 24, 2024

Download(s)

7
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric