Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/13820
Authors: Yang, Qingyuan* 
Pitman, E Bruce* 
Spiller, Elaine* 
Bursik, Marcus* 
Bevilacqua, Andrea* 
Title: Novel statistical emulator construction for volcanic ash transport model Ash3d with physically motivated measures
Journal: Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences 
Series/Report no.: /476 (2020)
Publisher: the Royal Society P.
Issue Date: Sep-2020
DOI: 10.1098/rspa.2020.0161
Abstract: Statistical emulators are a key tool for rapidly producing probabilistic hazard analysis of geophysical processes. Given output data computed for a relatively small number of parameter inputs, an emulator interpolates the data, providing the expected value of the output at untried inputs and an estimate of error at that point. In this work, we propose to fit Gaussian Process emulators to the output from a volcanic ash transport model, Ash3d. Our goal is to predict the simulated volcanic ash thickness from Ash3d at a location of interest using the emulator. Our approach is motivated by two challenges to fitting emulators—characterizing the input wind field and interactions between that wind field and variable grain sizes. We resolve these challenges by using physical knowledge on tephra dispersal. We propose new physically motivated variables as inputs and use normalized output as the response for fitting the emulator. Subsetting based on the initial conditions is also critical in our emulator construction. Simulation studies characterize the accuracy and efficiency of our emulator construction and also reveal its current limitations. Our work represents the first emulator construction for volcanic ash transport models with considerations of the simulated physical process.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
RSPA_2020.pdf3.44 MBAdobe PDFView/Open
Show full item record

Page view(s)

415
checked on Apr 24, 2024

Download(s)

15
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric