Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/13678
DC FieldValueLanguage
dc.date.accessioned2020-09-07T05:29:03Z-
dc.date.available2020-09-07T05:29:03Z-
dc.date.issued2020-09-04-
dc.identifier.urihttp://hdl.handle.net/2122/13678-
dc.description.abstractThis study presents and discusses horizontal and vertical geodetic velocities for a low strain rate region of the south Alpine thrust front in northeastern Italy obtained by integrating GPS, interferometric synthetic aperture radar (InSAR) and leveling data. The area is characterized by the presence of subparallel, south-verging thrusts whose seismogenic potential is still poorly known. Horizontal GPS velocities show that this sector of the eastern Southern Alps is undergoing ∼1 mm a−1 of NW–SE shortening associated with the Adria–Eurasia plate convergence, but the horizontal GPS velocity gradient across the mountain front provides limited constraints on the geometry and slip rate of the several subparallel thrusts. In terms of vertical velocities, the three geodetic methods provide consistent results showing a positive velocity gradient, of ∼ 1.5 mm a−1, across the mountain front, which can hardly be explained solely by isostatic processes. We developed an interseismic dislocation model whose geometry is constrained by available subsurface geological reconstructions and instrumental seismicity. While a fraction of the measured uplift can be attributed to glacial and erosional isostatic processes, our results suggest that interseismic strain accumulation at the Montello and the Bassano–Valdobbiadene thrusts it significantly contributing to the measured uplift. The seismogenic potential of the Montello thrust turns out to be smaller than that of the Bassano–Valdobbiadene fault, whose estimated parameters (locking depth equals 9.1 km and slip rate equals 2.1 mm a−1) indicate a structure capable of potentially generating a Mw>6.5 earthquake. These results demonstrate the importance of precise vertical ground velocity data for modeling interseismic strain accumulation in slowly deforming regions where seismological and geomorphological evidence of active tectonics is often scarce or not conclusive.en_US
dc.language.isoEnglishen_US
dc.publisher.nameCopernicusen_US
dc.relation.ispartofSolid Earthen_US
dc.relation.ispartofseries5/11(2020)en_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectSouthern Alpsen_US
dc.subjectVertical Velocitiesen_US
dc.subjectGPS and InSAR integrationen_US
dc.subjectInterseismic Deformationen_US
dc.subjectDislocation Modelen_US
dc.subjectSeismic Potentialen_US
dc.titleNew insights into active tectonics and seismogenic potential of the Italian Southern Alps from vertical geodetic velocitiesen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber1681–1698en_US
dc.subject.INGV04.03. Geodesyen_US
dc.subject.INGV04.07. Tectonophysicsen_US
dc.identifier.doi10.5194/se-11-1681-2020en_US
dc.relation.referencesAmoruso, A. and Crescentini, L.: Inversion of synthetic geodetic data for the 1997 Colfiorito events: clues on the effects of layering, assessment of model parameter PDFs, and model selection criteria, Ann. Geophys., 51, 461–475, https://doi.org/10.4401/ag-3027, 2008.  Anderlini, L., Serpelloni, E., Tolomei, C., De Martini, P. M., Pezzo, G., Gualandi, A., and Spada, G.: InSAR long-term velocities from Envisat satellites in the Venetian Southern Alps (Italy), EUDAT, https://doi.org/10.23728/b2share.486d3b553c564cc6826e24548e85ad1d, 2020.  Anselmi, M., Govoni, A., De Gori, P., and Chiarabba, C.: Seismicity and velocity structures along the south-Alpine thrust front of the Venetian Alps (NE-Italy), Tectonophysics, 513, 37–48, https://doi.org/10.1016/j.tecto.2011.09.023, 2011.  Árnadóttir, T. and Segall, P.: The 1989 Loma Prieta earthquake imaged from inversion of geodetic data, J. Geophys. Res.-Sol. Ea., 99, 21835–21855, https://doi.org/10.1029/94JB01256, 1994.  Árnadóttir, T., Segall, P., and Matthews, M.: Resolving the discrepancy between geodetic and seismic fault models for the 1989 Loma Prieta, California, earthquake, B. Seismol. Soc. Am., 82, 2248–2255, 1992.  Barba, S., Finocchio, D., Sikdar, E., and Burrato, P.: Modelling the interseismic deformation of a thrust system: seismogenic potential of the Southern Alps, Terra Nova, 25, 221–227, https://doi.org/10.1111/ter.12026, 2013.  Barletta, V. R., Ferrari, C., Diolaiuti, G., Carnielli, T., Sabadini, R., and Smiraglia, C.: Glacier shrinkage and modeled uplift of the Alps, Geophys. Res. Lett., 33, L14307, https://doi.org/10.1029/2006GL026490, 2006.  Bechtold, M., Battaglia, M., Tanner, D. C., and Zuliani, D.: Constraints on the active tectonics of the Friuli/NW Slovenia area from CGPS measurements and three-dimensional kinematic modeling, J. Geophys. Res., 114, B03408, https://doi.org/10.1029/2008JB005638, 2009.  Benedetti, L., Tapponnier, P., King, G. C. P., Meyer, B., and Manighetti, I.: Growth folding and active thrusting in the Montello region, Veneto, northern Italy, J. Geophys. Res.-Sol. Ea., 105, 739–766, https://doi.org/10.1029/1999JB900222, 2000.  Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE T. Geosci. Remote Sens., 40, 2375–2383, https://doi.org/10.1109/TGRS.2002.803792, 2002.  Bertotti, G., Picotti, V., Bernoulli, D., and Castellarin, A.: From rifting to drifting: tectonic evolution of the South-Alpine upper crust from the Triassic to the Early Cretaceous, Sediment. Geol., 86, 53–76, https://doi.org/10.1016/0037-0738(93)90133-P, 1993.  Biggs, J., Wright, T., Lu, Z., and Parsons, B.: Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska, Geophysical Journal International, 170, 1165–1179, https://doi.org/10.1111/j.1365-246X.2007.03415.x, 2007.  Blewitt, G. and Lavallée, D.: Effect of annual signals on geodetic velocity, J. Geophys. Res., 107, 2145, https://doi.org/10.1029/2001JB000570, 2002.  Bock, Y., Wdowinski, S., Ferretti, A., Novali, F., and Fumagalli, A.: Recent subsidence of the Venice Lagoon from continuous GPS and interferometric synthetic aperture radar, Geochem. Geophy. Geosy., 13, Q03023, https://doi.org/10.1029/2011GC003976, 2012.  Brambati, A., Carbognin, L., Quaia, T., Teatini, P., and Tosi, L.: The Lagoon of Venice: Geological Setting, Evolution and Land Subsidence, Episodes, 26, 264–268, 2003.  Burrato, P., Poli, M. E., Vannoli, P., Zanferrari, A., Basili, R., and Galadini, F.: Sources of Mw 5+ earthquakes in northeastern Italy and western Slovenia: An updated view based on geological and seismological evidence, Tectonophysics, 453, 157–176, https://doi.org/10.1016/j.tecto.2007.07.009, 2008.  Byrd, R. H., Hribar, M. E., and Nocedal, J.: An Interior Point Algorithm for Large-Scale Nonlinear Programming, SIAM J. Optimiz., 9, 877–900, 1999.  Carbognin, L., Tosi, L., and Teatini, P.: Analysis of actual land subsidence in Venice and its hinterland (Italy), in: Land Subsidence, edited by: Barends, J. F., Brouwer, F. J., and Schröder, F. H., 129–137, A. A. Balkema, Rotterdam, 1995.  Carbognin, L., Teatini, P., and Tosi, L.: Eustacy and land subsidence in the Venice Lagoon at the beginning of the new millennium, J. Marine Syst., 51, 345–353, https://doi.org/10.1016/j.jmarsys.2004.05.021, 2004.  Carminati, E. and Di Donato, G.: Separating natural and anthropogenic vertical movements in fast subsiding areas: The Po plain (N. Italy) case, Geophys. Res. Lett., 26, 2291–2294, https://doi.org/10.1029/1999GL900518, 1999.  Carminati, E. and Martinelli, G.: Subsidence rates in the Po Plain, northern Italy: the relative impact of natural and anthropogenic causation, Eng. Geol., 66, 241–255, https://doi.org/10.1016/S0013-7952(02)00031-5, 2002.  Carton, A., Bondesan, A., Fontana, A., Meneghel, M., Miola, A., Mozzi, P., Primon, S., and Surian, N.: Geomorphological evolution and sediment transfer in the Piave River watershed (north-eastern Italy) since the LGM, Géomorphologié, 3, 37–58, 2009.  Castaldini, D. and Panizza, M.: Inventario delle faglie attive tra i fiumi Po e Piave e il lago di Como (Italia Settentrionale), Il Quaternario Italian Journal of Quaternary Sciences, 4, 333–410, 1991.  Castellarin, A., Cantelli, L., Fesce, A. M., Mercier, J. L., Picotti, V., Pini, G. A., Prosser, G., and Selli, L.: Alpine compressional tectonics in the Southern Alps. Relationships with the N-Apennines, Annales Tectonicae, 6, 62–94, 1992.  Castellarin, A., Vai, G. B., and Cantelli, L.: The Alpine evolution of the Southern Alps around the Giudicarie faults: A Late Cretaceous to Early Eocene transfer zone, Tectonophysics, 414, 203–223, https://doi.org/10.1016/j.tecto.2005.10.019, 2006.  Cervelli, P., Murray, M. H., Segall, P., Amelung, F., Aoki, Y., and Kato, T.: Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm off the Izu Peninsula, Japan, J. Geophys. Res., 106, 11217–11237, 2001.  Cheloni, D., D'Agostino, N., and Selvaggi, G.: Interseismic coupling, seismic potential, and earthquake recurrence on the southern front of the Eastern Alps (NE Italy), J. Geophys. Res.-Sol. Ea., 119, 4448–4468, https://doi.org/10.1002/2014jb010954, 2014.  Chen, W., Braitenberg, C., and Serpelloni, E.: Interference of tectonic signals in subsurface hydrologic monitoring through gravity and GPS due to mountain building, Global Planet. Change, 167, 148–159, https://doi.org/10.1016/j.gloplacha.2018.05.003, 2018.  Chery, J., Genti, M., and Vernant, P.: Ice cap melting and low-viscosity crustal root explain the narrow geodetic uplift of the Western Alps, Geophys. Res. Lett., 43, 3193–3200, https://doi.org/10.1002/2016GL067821, 2016.  Cianflone, G., Tolomei, C., Brunori, C., and Dominici, R.: InSAR Time Series Analysis of Natural and Anthropogenic Coastal Plain Subsidence: The Case of Sibari (Southern Italy), Remote Sens., 7, 16004–16023, https://doi.org/10.3390/rs71215812, 2015.  Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The Last Glacial Maximum, Science, 325, 710–714, 2009.  Clark, P. U., Shakun, J. D., Baker, P. A., Bartlein, P. J., Brewer, S., Brook, E., Carlson, A. E., Cheng, H., Kaufman, D. S., Liu, Z., Marchitto, T. M., Mix, A. C., Morrill, C., Otto-Bliesner, B. L., Pahnke, K., Russell, J. M., Whitlock, C., Adkins, J. F., Blois, J. L., Clark, J., Colman, S. M., Curry, W. B., Flower, B. P., He, F., Johnson, T. C., Lynch-Stieglitz, J., Markgraf, V., McManus, J., Mitrovica, J. X., Moreno, P. I., and Williams, J. W.: Global climate evolution during the last deglaciation, P. Natl. Acad. Sci. USA, 109, E1134–E1142, 2012.  D'Agostino, N., Cheloni, D., Mantenuto, S., Selvaggi, G., Michelini, A., and Zuliani, D.: Strain accumulation in the southern Alps (NE Italy) and deformation at the northeastern boundary of Adria observed by CGPS measurements, Geophys. Res. Lett., 32, L19306, https://doi.org/10.1029/2005GL024266, 2005.  Danesi, S., Pondrelli, S., Salimbeni, S., Cavaliere, A., Serpelloni, E., Danecek, P., Lovati, S., and Massa, M.: Active deformation and seismicity in the Southern Alps (Italy): The Montello hill as a case study, Tectonophysics, 653, 95–108, https://doi.org/10.1016/j.tecto.2015.03.028, 2015.  Daout, S., Barbot, S., Peltzer, G., Doin, M. P., Liu, Z., and Jolivet, R.: Constraining the kinematics of metropolitan Los Angeles faults with a slip-partitioning model, Geophys. Res. Lett., 43, 11192–11201, https://doi.org/10.1002/2016GL071061, 2016.  Devoti, R., Zuliani, D., Braitenberg, C., Fabris, P., and Grillo, B.: Hydrologically induced slope deformations detected by GPS and clinometric surveys in the Cansiglio Plateau, southern Alps, Earth Planet. Sc. Lett., 419, 134–142, https://doi.org/10.1016/j.epsl.2015.03.023, 2015.  Doglioni, C.: Thrust tectonics example from the venetian alps, Studi Geologici Camerti, special volume, 117–129, 1990.  Doglioni, C.: The Venetian Alps thrust belt, in: Thrust Tectonics, Springer Netherlands, Dordrecht, 319–324, https://doi.org/10.1007/978-94-011-3066-0_29, 1992.  Doin, M.-P., Lasserre, C., Peltzer, G., Cavalié, O., and Doubre, C.: Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models, J. Appl. Geophys., 69, 35–50, 2009.  Efron, B. and Tibshirani, R.: Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy, Stat. Sci., 1, 54–75, https://doi.org/10.1214/ss/1177013815, 1986.  Elliott, J. R., Biggs, J., Parsons, B., and Wright, T. J.: InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays, Geophys. Res. Lett., 35, L12309, https://doi.org/10.1029/2008GL033659, 2008.  Fantoni, R. and Franciosi, R.: Tectono-sedimentary setting of the Po Plain and Adriatic foreland, Rend. Fis. Acc. Lincei, 21, 197–209, https://doi.org/10.1007/s12210-010-0102-4, 2010.  Fantoni, R., Catellani, D., Merlini, S., Rogledi, S., and Venturini, S.: La registrazione degli eventi deformativi cenozoici nell'avampaese veneto-friulano, Mem. Soc. Geol. It., 57, 301–313, 2002.  Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.  Feng, G., Ding, X., Li, Z., Mi, J., Zhang, L., and Omura, M.: Calibration of an InSAR-Derived Coseimic Deformation Map Associated With the 2011 Mw-9.0 Tohoku-Oki Earthquake, IEEE Geosci. Remote Sens. Lett., 9, 302–306, https://doi.org/10.1109/LGRS.2011.2168191, 2012.  Ferretti, A., Savio, G., Barzaghi, R., Borghi, A., Musazzi, S., Novali, F., Prati, C., and Rocca, F.: Submillimeter Accuracy of InSAR Time Series: Experimental Validation, IEEE T. Geosci. Remote Sens., 45, 1142–1153, https://doi.org/10.1109/TGRS.2007.894440, 2007.  Fontana, A., Mozzi, P., and Bondesan, A.: Alluvial megafans in the Veneto-Friuli Plain: Evidence of aggrading and erosive phases during Late Pleistocene and Holocene, Quaternary Int., 189, 71–90, 2008.  Fontana, A., Mozzi, P., and Marchetti, M.: Alluvial fans and megafans along the southern side of the Alps, Sediment. Geol., 301, 150–171, 2014.  Frisch, W., Kuhlemann, J., Dunkl, I., and Brügel, A.: Palinspastic reconstruction and topographic evolution of the Eastern Alps during late Tertiary tectonic extrusion, Tectonophysics, 297, 1–15, https://doi.org/10.1016/S0040-1951(98)00160-7, 1998.  Gabriel, A., Goldstein, R., and Zebker, H.: Mapping Small Elevation Changes Over Large Areas: Differential Radar Interferometry, J. Geophys. Res., 94, 9183–9191, https://doi.org/10.1029/JB094iB07p09183, 1989.  Galadini, F., Meletti, C., and Vittori, E.: Major active faults in Italy: available surficial data, Neth. J. Geosci., 80, 273–296, https://doi.org/10.1017/S001677460002388X, 2001.  Galadini, F., Poli, M. E., and Zanferrari, A.: Seismogenic sources potentially responsible for earthquakes with M≥6 in the eastern Southern Alps (Thiene-Udine sector, NE Italy), Geophys. J. Int., 161, 739–762, https://doi.org/10.1111/j.1365-246x.2005.02571.x, 2005.  Gatto, P. and Carbognin, L.: The Lagoon of Venice: Natural environmental trend and man-induced modification, Hydrological Science Bulletin, 26, 379–391, 1981.  Ghulam, A., Amer, R., and Ripperdan, R.: A filtering approach to improve deformation accuracy using large baseline, low coherence DInSAR phase images, 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, IEEE, 3494–3497, https://doi.org/10.1109/IGARSS.2010.5652581, 2010.  Goldstein, R. M. and Werner, C. L.: Radar Interferogram Filtering for Geophysical Applications, Geophys. Res. Lett., 25, 4035–4038, https://doi.org/10.1029/1998GL900033, 1998.  Grandin, R., Doin, M.-P., Bollinger, L., Pinel-Puysségur, B., Ducret, G., Jolivet, R., and Sapkota, S. N.: Long-term growth of the Himalaya inferred from interseismic InSAR measurement, Geology, 40, 1059–1062, https://doi.org/10.1130/G33154.1, 2012.  Hammond, W. C., Li, Z., Plag, H. P., Kreemer, C., and Blewitt, G.: Integrated InSAR and GPS studies of crustal deformation in the Western Great Basin, Western United States, Int. A. of the Ph., Rem. Sens. and Spatial Information Sc., Kyoto Japan, XXXVIII, 39–43, 2010.  Herring, T. A., King, R. W., Floyd, M. A., and McClusky, S. C.: Introduction to GAMIT/GLOBK, Release 10.6, available at: http://geoweb.mit.edu/gg/Intro_GG.pdf (last access: 31 August 2020), 2015.  Hsu, Y.-J., Simons, M., Yu, S.-B., Kuo, L.-C., and Chen, H.-Y.: A two-dimensional dislocation model for interseismic deformation of the Taiwan mountain belt, Earth Planet. Sc. Lett., 211, 287–294, https://doi.org/10.1016/S0012-821X(03)00203-6, 2003.  Jolivet, R., Lasserre, C., Doin, M.-P., Guillaso, S., Peltzer, G., Dailu, R., Sun, J., Shen, Z.-K., and Xu, X.: Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry, J. Geophys. Res., 117, B06401, https://doi.org/10.1029/2011JB008732, 2012.  Jolivet, R., Lasserre, C., Doin, M. P., Peltzer, G., Avouac, J. P., Sun, J., and Dailu, R.: Spatio-temporal evolution of aseismic slip along the Haiyuan fault, China: Implications for fault frictional properties, Earth Planet. Sc. Lett., 377–378, 23–33, https://doi.org/10.1016/j.epsl.2013.07.020, 2013.  Jònsson, S., Zebker, H. A., Segall, P., and Amelung, F.: Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements, B. Seismol. Soc. Am., 92, 1377–1389, https://doi.org/10.1785/0120000922, 2002.  Lohman, R. and Simons, M.: Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling, Geochem. Geophy. Geosy., 6, Q01007, https://doi.org/10.1029/2004GC000841, 2005.  Maurer, J. and Johnson, K.: Fault coupling and potential for earthquakes on the creeping section of the central San Andreas Fault, J. Geophys. Res.-Sol. Ea., 119, 4414–4428, https://doi.org/10.1002/2013JB010741, 2014.  Mey, J., Scherler, D., Wickert, A. D., Egholm, D. L., Tesauro, M., Schildgen, T. F., and Strecker, M. R.: Glacial isostatic uplift of the European Alps, Nat. Commun., 7, 13382, https://doi.org/10.1038/ncomms13382, 2016.  Molinari, I., Verbeke, J., Boschi, L., Kissling, E., and Morelli, A.: Italian and Alpine three-dimensional crustal structure imaged by ambient-noise surface-wave dispersion, Geochem. Geophy. Geosy. 16, 4405–4421, https://doi.org/10.1002/2015GC006176, 2015.  Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., and Piccin, A.: The Alpine LGM in the boreal ice-sheets game, Sci. Rep.-UK, 7, 2078, https://doi.org/10.1038/s41598-017-02148-7, 2017.  Moulin, A. and Benedetti, L.: Fragmentation of the Adriatic Promontory: New Chronological Constraints From Neogene Shortening Rates Across the Southern Alps (NE Italy), Tectonics, 105, 739–721, https://doi.org/10.1029/2018TC004958, 2018.  Mozzi, P.: Alluvial plain formation during the Late Quaternary between the southern Alpine margin and the Lagoon of Venice (northern Italy), Geografia Fisica e Dinamica Quaternaria, 7, 219–230, 2005.  Nocquet, J. M., Sue, C., Walpersdorf, A., Tran, T., Lenôtre, N., Vernant, P., Cushing, M., Jouanne, F., Masson, F., Baize, S., Chery, J., and van der Beek, P. A.: Present-day uplift of the western Alps, Sci. Rep.-UK, 6, 28404, https://doi.org/10.1038/srep28404, 2016.  Norton, K. P. and Hampel, A.: Postglacial rebound promotes glacial re-advances – a case study from the European Alps, Terra Nova, 22, 297–302, 2010.  Okada, Y.: Surface deformation due to shear and tensile faults in a half-space, B. Seismol. Soc. Am., 75, 1135–1154, 1985.  Pedersen, R., Jònsson, S., Àrnadòttir, T., Sigmundsson, F., and Feigl, K. L.: Fault slip distribution of two June 2000 Mw 6.5 earthquakes in South Iceland estimated from joint inversion of InSAR and GPS measurements, Earth. Planet. Sc. Lett., 213, 487–502, https://doi.org/10.1016/S0012-821X(03)00302-9, 2003.  Pellegrini, G. B. and Zambrano, R.: Il corso del Piave a Ponte nelle Alpi nel Quaternario, Studi Trentini di Scienze Naturali, LVI, 69–100, 1979.  Pellegrini, G. B. and Zanferrari, A.: Inquadramento strutturale ed evoluzione neotettonica dell'area compresa nei fogli 23-Belluno, 22-Feltre (p.p.) e 24-Maniago (p.p.), C.N.R. Prog. Final. “Geodinamica”: contributi alla realizzazione della carta neotettonica d'Italia, Pubbl. 356, 459–496, 1980.  Pellegrini, G. B., Albanese, D., Bertoldi, R., and Surian, N.: La deglaciazione alpina nel Vallone Bellunese, Alpi meridionali orientali, Geografia Fisica e Dinamica Quaternaria, Supplemento 7, 271–280, 2005.  Peltier, W. R.: Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE, Annu. Rev. Earth Planet. Sc., 32, 111–149, https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004.  Pondrelli, S., Ekstrom, G., and Morelli, A.: Seismotectonic re-evaluation ofthe 1976 Friuli, Italy, seismic sequence, J. Seismol., 5, 73–83, https://doi.org/10.1023/A:1009822018837, 2001.  Priolo, E., Romanelli, M., Plasencia Linares, M. P., Garbin, M., Peruzza, L., Romano, M. A., Marotta, P., Bernardi, P., Moratto, L., Zuliani, D., and Fabris, P.: Seismic Monitoring of an Underground Natural Gas Storage Facility: The Collalto Seismic Network, Seismol. Res. Lett., 86, 109–123, https://doi.org/10.1785/0220140087, 2015.  Ratschbacher, L., Merle, O., Davy, P., and Cobbold, P.: Lateral extrusion in the eastern Alps, Part 1: Boundary conditions and experiments scaled for gravity, Tectonics, 10, 245–256, https://doi.org/10.1029/90TC02622, 1991a.  Ratschbacher, L., Frisch, W., Linzer, H. G., and Merle, O.: Lateral extrusion in the Eastern Alps, part 2: structural analysis, Tectonics, 10, 257–271, https://doi.org/10.1029/90TC02623, 1991b.  Robl, J., Heberer, B., Prasicek, G., Neubauer, F., and Hergarten, S.: The topography of a continental indenter: The interplay between crustal deformation, erosion, and base level changes in the eastern Southern Alps, J. Geophys. Res.-Earth, 122, 310–334, https://doi.org/10.1002/2016JF003884, 2017.  Romano, M. A., Peruzza, L., Garbin, M., Priolo, E., and Picotti, V.: Microseismic Portrait of the Montello Thrust (Southeastern Alps, Italy) from a Dense High-Quality Seismic Network, Seismol. Res. Lett., 90, 1502–1517, https://doi.org/10.1785/0220180387, 2019.  Rovida, A., Locati, M., Camassi, R., Lolli, B., and Gasperini, P. (Eds.): Italian Parametric Earthquake Catalogue (CPTI15), Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome (Italy), https://doi.org/10.6092/INGV.IT-CPTI15, 2016.  Schmid, S. F., Genschuh, B., Kissling, E., and Schuster, R.: Tectonic map and overall architecture of the Alpine orogen, Eclogae Geol. Helv., 97, 93–117, https://doi.org/10.1007/s00015-004-1113-x, 2004.  Segall, P. and Davis, J. L.: GPS applications for geodynamics and earthquake studies, Annu. Rev. Earth Planet. Sc., 23, 201–336, 1997.  Serpelloni, E., Casula, G., Galvani, A., Anzidei, M., and Baldi, P.: Data analysis of permanent GPS networks in Italy and surrounding regions: application of a distributed processing approach, Ann. Geophys.-Italy, 49, 897–928, 2006.  Serpelloni, E., Faccenna, C., Spada, G., Dong, D., and Williams, S. D. P.: Vertical GPS ground motion rates in the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary, J. Geophys. Res.-Sol. Ea., 118, 6003–6024, https://doi.org/10.1002/2013JB010102, 2013.  Serpelloni, E., Vannucci, G., Anderlini, L., and Bennett, R. A.: Kinematics, seismotectonics and seismic potential of the eastern sector of the European Alps from GPS and seismic deformation data, Tectonophysics, 688, 157–181, https://doi.org/10.1016/j.tecto.2016.09.026, 2016.  Serpelloni, E., Pintori, F., Gualandi, A., Scoccimarro, E., Cavaliere, A., Anderlini, L., Belardinelli, M. E., and Todesco, M.: Hydrologically-induced karst deformation: insights from GPS measurements in the Adria-Eurasia plate boundary zone, J. Geophys. Res.-Sol. Ea., 85, 457, https://doi.org/10.1002/2017jb015252, 2018.  Shirzaei, R. and Bürgmann, R.: Topography correlated atmospheric delay correction in radar interferometry using wavelet transfoms, Geophys. Res. Lett., 39, L01305, https://doi.org/10.1029/2011GL049971, 2012.  Slejko, D., Neri, G., Orozova, I., Renner, G., and Wyss, M.: Stress field in Friuli (NE Italy) from fault plane solutions of activity following the 1976 main shock, B. Seismol. Soc. Am., 89, 1037–1052, 1999.  Spada, G., Antonioli, A., Boschi, L., Brandi, V., Cianetti, S., Galvani, G., Giunchi, C., Perniola, B., Piana Agostinetti, N., Piersanti, A., and Stocchi, P.: Modeling Earth's post-glacial rebound, EOS T. Am. Geophys. Un., 85, 62–64, https://doi.org/10.1029/2004EO060007, 2004.  Spada, G., Stocchi, P., and Colleoni, F.: Glacio–isostatic Adjustment in the Po Plain and in the Northern Adriatic Region, Pure Appl. Geophys., 166, 1303–1318, https://doi.org/10.1007/s00024-004-0498-9, 2009.  Spada, G., Barletta, V. R., Klemann, V., Riva, R. E. M., Martinec, Z., Gasperini, P., Lund, B., Wolf, D., Vermeersen, L. L. A., and King, M. A.: A benchmark study for glacial isostatic adjustment codes, Geophys. J. Int., 185, 106–132, https://doi.org/10.1111/j.1365-246X.2011.04952.x, 2011.  Sternai, P., Herman, F., Champagnac, J.-D., Fox, M., Salcher, B., and Willett, S. D.: Preglacial topography of the European Alps, Geology, 40, 1067–1070, 2012.   Sternai, P., Sue, C., Husson, L., Serpelloni, E., Becker, T. W., Willett, S. D., Faccenna, C., Di Giulio, A., Spada, G., Jolivet, L., Valla, P., Petit, C., Nocquet, J.-M., Walpersdorf, A., and Castelltort, S.: Present-day uplift of the European Alps: Evaluating mechanisms and models of their relative contributions, Earth-Sci. Rev., 190, 589–604, https://doi.org/10.1016/j.earscirev.2019.01.005, 2019.  Teatini, P., Tosi, L., Strozzi, T., Carbognin, L., Wegmüller, U., and Rizzetto, F.: Mapping regional land displacements in the Ven ce coastland by an integrated monitoring system, Remote Sens. Environ., 98, 403–413, https://doi.org/10.1016/j.rse.2005.08.002, 2005.  Tosi, L., Carbognin, L., Teatini, P., Strozzi, T., and Wegmüller, U.: Evidence of the present relative land stability of Venice, Italy, from land, sea, and space observations, Geophys. Res. Lett., 29, 1562, https://doi.org/10.1029/2001GL013211, 2002.  Tsai, M.-C., Yu, S.-B., Hsu, Y.-J., Chen, H.-Y., and Chen, H.-W.: Interseismic crustal deformation of frontal thrust fault system in the Chiayi–Tainan area, Taiwan, Tectonophysics, 554–557, 169–184, https://doi.org/10.1016/j.tecto.2012.05.014, 2012.  Vergne, J., Cattin, R., and Avouac, J. P.: On the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faults, Geophys. J. Int., 147, 155–162, 2001.  Waltz, R. A., Morales, J. L., Nocedal, J., and Orban, D.: An interior algorithm for nonlinear optimization that combines line search and trust region steps, Math. Programm., 107, 391–408, 2006.  Wang, H. and Wright, T. J.: Satellite geodetic imaging reveals internal deformation of western Tibet, Geophys. Res. Lett., 39, L07303, https://doi.org/10.1029/2012GL051222, 2012.  Wells, D. L. and Coppersmith, K. J.: New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, B. Seismol. Soc. Am., 84, 974–1002, 1994.  Wessel, P. and Smith, W. H. F.: New, improved version of Generic Mapping Tools released, EOS T. Am. Geophys. Un., 79, p. 579, https://doi.org/10.1029/98EO00426, 1998.  Zanferrari, A., Pianetti, F., Mattana, U., Dall'Arche, L., and Tonielli, V.: Evoluzione neotettonica e schema strutturale dell'area compresa nei Fogli 38 – Conegliano, 37 – Bassano del Grappa (p.p.) e 39 – Pordenone (p.p.), in: CNR (1980) – Contributi alla realizzazione della Carta Neotettonica d'Italia, P.F. Geodinamica, Pubbl. 356, 397–435, 1980.  Zebker, H. A., Rosen, P. A., Goldstein, R. M., Gabriel, A., and Werner, C. L.: On the derivation of coseismic displacement fields using differential radar interferometry: the Landers earthquake, J. Geophys. Res., 99, 19617–19634, https://doi.org/10.1029/94JB01179, 1994. en_US
dc.description.obiettivoSpecifico2T. Deformazione crostale attivaen_US
dc.description.journalTypeJCR Journalen_US
dc.relation.issn1869-9510en_US
dc.relation.eissn1869-9529en_US
dc.contributor.authorAnderlini, Letizia-
dc.contributor.authorSerpelloni, Enrico-
dc.contributor.authorTolomei, Cristiano-
dc.contributor.authorDe Martini, Paolo Marco-
dc.contributor.authorPezzo, Giuseppe-
dc.contributor.authorGualandi, Adriano-
dc.contributor.authorSpada, Giorgio-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAen_US
dc.contributor.departmentDiSPeA, Urbino University, Urbino, Italyen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptInsitute of Physics, University of Urbino, Italy-
crisitem.author.orcid0000-0002-9461-3320-
crisitem.author.orcid0000-0003-1822-403X-
crisitem.author.orcid0000-0001-7378-0712-
crisitem.author.orcid0000-0002-3598-5191-
crisitem.author.orcid0000-0003-4851-4193-
crisitem.author.orcid0000-0002-3100-8932-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
se-11-1681-2020.pdfNew insights into active tectonics and seismogenic potential of the Italian Southern Alps from vertical geodetic velocities11.19 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

2
checked on Feb 10, 2021

Page view(s)

558
checked on Apr 20, 2024

Download(s)

26
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric