Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/13614
DC FieldValueLanguage
dc.date.accessioned2020-05-19T10:38:32Z-
dc.date.available2020-05-19T10:38:32Z-
dc.date.issued2020-
dc.identifier.urihttp://hdl.handle.net/2122/13614-
dc.description.abstractThe dynamics of continental subduction is largely controlled by the rheological properties of rocks involved along the subduction channel. Serpentinites have low viscosity at geological strain rates. However, compelling geophysical evidence of a serpentinite channel during continental subduction is still lacking. Here we show that anomalously low shear-wave seismic velocities are found beneath the Western Alps, along the plate interface between the European slab and the overlying Adriatic mantle. We propose that these seismic velocities indicate the stacked remnants of a weak fossilised serpentinite channel, which includes both slivers of abyssal serpentinite formed at the ocean floor and mantle-wedge serpentinite formed by fluid release from the subducting slab. Our results suggest that this serpentinized plate interface may have favoured the subduction of continental crust into the upper mantle and the formation/exhumation of ultra-high pressure metamorphic rocks, providing new constraints to develop the conceptual and quantitative understanding of continental-subduction dynamics.en_US
dc.description.sponsorshipThis research was supported by NSFC (grant nos. 41888101, 91755000, and 41625016), CAS program (GJHZ1776), Agence Nationale de la Recherche (contract ANR-15-CE31-0015), and Labex OSUG@2020 (Investissement d’Avenir, ANR-10-LABX-56). T.B. is funded by the European Union’s Horizon 2020 research and innovation program (grant no. 716542). This is contribution 1484 from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au). This work was supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia.en_US
dc.language.isoEnglishen_US
dc.publisher.nameNature P. G.en_US
dc.relation.ispartofNature Communicationen_US
dc.relation.ispartofseries/11 (2020)en_US
dc.subjectLithosphere reologyen_US
dc.subjectserpentinitesen_US
dc.subjectsubductionen_US
dc.subjectWestern Alpsen_US
dc.subjectexhumationen_US
dc.titleEvidence for a serpentinized plate interface favouring continental subductionen_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumberid 2171en_US
dc.subject.INGV04.01. Earth Interioren_US
dc.subject.INGV04.07. Tectonophysicsen_US
dc.identifier.doi10.1038/s41467-020-15904-7en_US
dc.relation.referencesAbers, G. A. Seismic low-velocity layer at the top of subducting slabs: observations, predictions, and systematics. Phys. Earth Planet. 149, 7–29 (2005). Bostock, M. G., Hyndman, R. D., Rondenay, S. & Peacock, S. M. An inverted continental Moho and serpentinization of the forearc mantle. Nature 417, 536–538 (2002). Kawakatsu, H. & Watada, S. Seismic evidence for deep-water transportation in the mantle. Science 316, 1468–1471 (2007). Hilairet, N. et al. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science 318 (2007). S. Guillot, S., Schwartz, S., Reynard, B., Agard, P. & Prigent, C. Tectonic significance of serpentinites. Tectonophysics 646, 1–19 (2015). Guillot, S, Hattori, K, Agard, P, Schwartz, S. & Vidal., O. Exhumation Processes in Oceanic and Continental Subduction Contexts: A Review (Springer: Berlin, 2009. Malusà, M. G., Faccenna, C., Garzanti, E. & Polino, R. Divergence in subduction zones and exhumation of high-pressure rocks (Eocene Western Alps). Earth Planet. Sci. Lett. 310, 21–32 (2011) Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E. & Bernoulli, D. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth Sci. Rev. 102, 121–158 (2010). Scambelluri, M., Strating, E. H. H., Piccardo, G. B., Vissers, R. L. M. & Rampone, E. Alpine olivine- and titanian clinohumite-bearing assemblages in the Erro-Tobbio peridotite (Voltri Massif, NW Italy). J. Metamorph. Geol. 9, 79–91 (1991). Schwartz, S. et al. Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos 178, 197–21 (2013). Cannaò, E., Scambelluri, M., Agostini, S., Tonarini, S. & Godard, M. Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface: The Voltri Massif case study (Ligurian Western Alps, Italy). Geochim. Cosmochim. Ac. 190, 115–133 (2016). Chopin, C. Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contrib. Mineral. Petr. 86, 107–118 (1984). Rubatto, D. & Hermann, J. Exhumation as fast as subduction? Geology 29, 3–6 (2001). Zhao, L. et al. Continuity of the Alpine slab unraveled by high-resolution P-wave tomography. J. Geophys. Res. 121, 8720–8737 (2016) Zhao, L. et al. First seismic evidence for continental subduction beneath the Western Alps. Geology 43, 815–818 (2015). Lyu, C., Pedersen, H. A., Paul, A., Zhao, L. & Solarino, S. Shear wave velocities in the upper mantle of the Western Alps: new constraints using array analysis of seismic surface waves. Geophys. J. Int. 210, 321–331 (2017). Malusà, M. G. et al. Earthquakes in the western alpine mantle wedge. Gondwana Res. 44, 89–95 (2017). Beller, S. et al. Lithospheric architecture of the South-Western Alps revealed by multiparameter teleseismic full waveform inversion. Geophys. J. Int. 212, 1369–1388 (2018). Lu, Y., Stehly, L. & Paul, A., AlpArray Working Group. High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise. Geophys. J. Int. 214, 1136–1150 (2018). Salimbeni, S. et al. Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography. Tectonophysics 731, 35–47 (2018). Solarino, S. et al. Mantle wedge exhumation beneath the Dora-Maira (U)HP dome unravelled by local earthquake tomography (Western Alps). Lithos 296, 623–636 (2018). Sun, W., Zhao, L., Malusà, M. G., Guillot, S. & Fu, L. Y. 3-D Pn tomography reveals continental subduction at the boundaries of the Adriatic microplate in the absence of a precursor oceanic slab. Earth Planet. Sci. Lett. 510, 131–141 (2019). Bezacier, L., Reynard, B., Cardon, H., Montagnac, G. & Bass, J. D. High‐pressure elasticity of serpentine and seismic properties of the hydrated mantle wedge. J. Geophys. Res. 118, 527–535 (2013). Reynard, B. Serpentine in active subduction zones. Lithos 178, 171–185 (2013). Schwartz, S., Allemand, P. & Guillot, S. Numerical model of the effect of serpentinites on the exhumation of eclogitic rocks: insights from the Monviso ophiolitic massif (Western Alps). Tectonophysics 342, 193–206 (2001). Hilairet, N. & Reynard, B. Stability and dynamics of serpentinite layer in subduction zone. Tectonophysics 465, 24–29 (2009). Bodin, T., Sambridge, M., Rawlinson, N. & Arroucau, P. Transdimensional tomography with unknown data noise. Geophys. J. Int. 189, 1536–1556 (2012). Bodin, T. et al. Transdimensional inversion of receiver functions and surface wave dispersion. J. Geophys. Res. 117, B02301 (2012). Yuan, H. & Bodin, T. A probabilistic shear wave velocity model of the crust in the central West Australian Craton constrained by transdimensional inversion of ambient noise dispersion. Tectonics 37, 1994–2012 (2018). Lardeaux, J. M. et al. A crustal‐scale cross‐section of the south‐western Alps combining geophysical and geological imagery. Terra Nova 18, 412–422 (2006). Weiss, T., Siegesmund, S., Rabbel, W., Bohlen, T. & Pohl, M. Seismic velocities and anisotropy of the lower continental crust: a review. Pure Appl. Geophys. 156, 97–122 (1999). Khazanehdari, J., Rutter, E. H. & Brodie, K. H. High‐pressure‐high‐temperature seismic velocity structure of the midcrustal and lower crustal rocks of the Ivrea‐Verbano zone and Serie dei Laghi, NW Italy. J. Geophys. Res. 105, 13843–13858 (2000). Bezacier, L., Reynard, B., Bass, J. D., Wang, J. & Mainprice, D. Elasticity of glaucophane, seismic velocities and anisotropy of the subducted oceanic crust. Tectonophysics 494, 201–210 (2010). Ji, S. et al. Magnitude and symmetry of seismic anisotropy in mica‐and amphibole‐bearing metamorphic rocks and implications for tectonic interpretation of seismic data from the southeast Tibetan Plateau. J. Geophys. Res. 120, 6404–6430 (2015). Rudnick, R. L. & Fountain, D. M. Nature and composition of the continental crust: a lower crustal perspective. Rev. Gophys. 33, 267–309 (1995). Brownlee, S. J. et al. Predicted velocity and density structure of the exhuming Papua New Guinea ultrahigh‐pressure terrane. J. Geophys. Res. 116, B08206 (2011). Ji, S. et al. Seismic velocities, anisotropy, and shear‐wave splitting of antigorite serpentinites and tectonic implications for subduction zones. J. Geophys. Res. 118, 1015–1037 (2013). Watanabe, T, Shirasugi, Y, Yano, H. & Michibayashi, K. Seismic velocity in antigorite-bearing serpentinite mylonites. 360, Geological Society: London, 2011. Pera, E., Mainprice, D. & Burlini, L. Anisotropic seismic properties of the upper mantle beneath the Torre Alfina area (Northern Apennines, Central Italy). Tectonophysics 370, 11–30 (2003). Shao, T. et al. Antigorite‐induced seismic anisotropy and implications for deformation in subduction zones and the Tibetan Plateau. J. Geophys. Res. 119, 2068–2099 (2014). Deschamps, F., Godard, M., Guillot, S. & Hattori, K. Geochemistry of subduction zone serpentinites: a review. Lithos 178, 96–127 (2013). Rouméjon, S. & Cannat, M. Serpentinization of mantle‐derived peridotites at mid‐ocean ridges: mesh texture development in the context of tectonic exhumation. Geochem. Geophy. Geosyst. 15, 2354–2379 (2014). Lafay, R. et al. High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: example from the Piedmont zone of the western Alps. Chem. Geol. 343, 38–54 (2013). Malusà, M. G. et al. Active carbon sequestration in the Alpine mantle wedge and implications for long-term climate trends. Sci. Rep. 8, 4740 (2018). Malusà, M. G. et al. Contrasting styles of (U) HP rock exhumation along the Cenozoic Adria‐Europe plate boundary (Western Alps, Calabria, Corsica). Geochem. Geophy. Geosyst. 16, 1786–1824 (2015). Liao, J. et al. Divergent plate motion drives rapid exhumation of (ultra) high pressure rocks. Earth Planet. Sci. Lett. 491, 67–80 (2018). Bodin, T., Yuan, H. & Romanowicz, B. Inversion of receiver functions without deconvolution-application to the Indian craton. Geophys. J. Int. 196, 1025–1033 (2014). Sambridge, M., Gallagher, K., Jackson, A. & Rickwood, P. Trans-dimensional inverse problems, model comparison and the evidence. Geophys. J. Int. 167, 528–542 (2006). Pilia, S. et al. Evidence of micro-continent entrainment during crustal accretion. Sci. Rep. 5, 8218 (2015). Young, M. K., Rawlinson, N. & Bodin, T. Transdimensional inversion of ambient seismic noise for 3D shear velocity structure of the Tasmanian crust. Geophysics 78, 49–62 (2013). Green, P. J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732 (1995). Thouvenot, F., Paul, A., Sénéchal, G., Hirn, A. & Nicolich, R. ECORS-CROP wide-angle reflection seismics: constraints on deep interfaces beneath the Alps. Mém. Soc. Géol. France 156, 97–106 (1990). Christensen, N. I. Serpentinites, peridotites, and seismology. Int. Geol. Rev. 46, 795–816 (2004). Yuan, H. & Dueker, K. Upper mantle tomographic Vp and Vs images of the Rocky Mountains in Wyoming, Colorado and New Mexico: evidence for thick, laterally heterogeneous lithosphere, in: (eds Randy, G. & Karlstrom, K.E.), The Rocky Mountain Region—an Evolving Lithosphere: Tectonics, Geochemistry, and Geophysics. 329–345 (American Geophysical Union, Washington, DC, 2005). Park, J. Surface waves in layered anisotropic structures. Geophys. J. Int. 126, 173–183 (1996). Kern, H., Jin, Z., Gao, S., Popp, T. & Xu, Z. Physical properties of ultrahigh-pressure metamorphic rocks from the Sulu terrain, eastern central China: implications for the seismic structure at the Donghai (CCSD) drilling site. Tectonophysics 354, 315–330 (2002). Evans, B. W. The serpentinite multisystem revisited: chrysotile is metastable. Int. Geol. Rev. 46, 479–506 (2004). Hilairet, N., Daniel, I. & Reynard, B. Equation of state of antigorite, stability field of serpentines, and seismicity in subduction zones. Geophy. Res. Lett. 33, L02302 (2006).en_US
dc.description.obiettivoSpecifico1T. Struttura della Terraen_US
dc.description.journalTypeJCR Journalen_US
dc.contributor.authorZhao, Liang-
dc.contributor.authorMalusà, Marco Giovanni-
dc.contributor.authorYuan, Huaiyu-
dc.contributor.authorPaul, Anne-
dc.contributor.authorGuillot, Stéphane-
dc.contributor.authorLu, Yang-
dc.contributor.authorStehly, Laurent-
dc.contributor.authorSolarino, Stefano-
dc.contributor.authorEva, Elena-
dc.contributor.authorLu, Gang-
dc.contributor.authorBodin, Thomas-
dc.contributor.departmentState Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, Chinaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentARC Centre of Excellencefor Core to Crust Fluids Systems, Department of Earth and Environmental Sciences, Macquarie University, North Ryde, Austraen_US
dc.contributor.departmentUniv. Grenoble Alpes, Univ. Savoie Mont Blanc,CNRS,IRD,IFSTTAR,ISTerre,38000Grenoble,Franen_US
dc.contributor.departmentUniv. Grenoble Alpes, Univ. Savoie Mont Blanc,CNRS,IRD,IFSTTAR,ISTerre,38000Grenoble,Franen_US
dc.contributor.departmentUniv. Grenoble Alpes, Univ. Savoie Mont Blanc,CNRS,IRD,IFSTTAR,ISTerre,38000Grenoble,Franen_US
dc.contributor.departmentUniv. Grenoble Alpes, Univ. Savoie Mont Blanc,CNRS,IRD,IFSTTAR,ISTerre,38000Grenoble,Franen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen_US
dc.contributor.departmentState Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, Chinaen_US
dc.contributor.departmentUniv. Lyon, Universite Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL-TPE, F-69622 Villeurbanne, Franceen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptARC Centre of Excellencefor Core to Crust Fluids Systems, Department of Earth and Environmental Sciences, Macquarie University, North Ryde, Austra-
crisitem.author.deptUniv. Grenoble Alpes, Univ. Savoie Mont Blanc,CNRS,IRD,IFSTTAR,ISTerre,38000Grenoble,Fran-
crisitem.author.deptUniv. Grenoble Alpes, Univ. Savoie Mont Blanc,CNRS,IRD,IFSTTAR,ISTerre,38000Grenoble,Fran-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptState Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China-
crisitem.author.deptUniv. Lyon, Universite Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL-TPE, F-69622 Villeurbanne, France-
crisitem.author.orcid0000-0001-7890-5668-
crisitem.author.orcid0000-0003-3512-7856-
crisitem.author.orcid0000-0002-1854-7157-
crisitem.author.orcid0000-0002-9577-1347-
crisitem.author.orcid0000-0001-6054-1325-
crisitem.author.orcid0000-0002-7393-6112-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
s41467-020-15904-7.pdfPublished manuscript1.66 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

3
checked on Feb 10, 2021

Page view(s)

246
checked on Apr 27, 2024

Download(s)

13
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric