Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.description.abstractOn 3 July 2019 a rapid sequence of paroxysmal explosions at the summit craters of Stromboli (Aeolian-Islands, Italy) occurred, followed by a period of intense Strombolian and effusive activity in July, and continuing until the end of August 2019. We present a joint analysis of multi-sensor infrared satellite imagery to investigate this eruption episode. Data from the SpinningEnhanced-Visible-and-InfraRed-Imager (SEVIRI) was used in combination with those from the Multispectral-Instrument (MSI), the Operational-Land-Imager (OLI), the Advanced-Very HighResolution-Radiometer (AVHRR), and the Visible-Infrared-Imaging-Radiometer-Suite (VIIRS). The analysis of infrared SEVIRI-data allowed us to detect eruption onset and to investigate short-term variations of thermal volcanic activity, providing information in agreement with that inferred by nighttime-AVHRR-observations. By using Sentinel-2-MSI and Landsat-8-OLI imagery, we better localized the active lava-flows. The latter were quantitatively characterized using infrared VIIRSdata, estimating an erupted lava volume of 6.33×10±3.17×10 m 3 and a mean output rate of 1.26 ± 0.63 m3/s for the July/August 2019 eruption period. The estimated mean-output-rate was higher than the ones in the 2002–2003 and 2014 Stromboli effusive eruptions, but was lower than in the 2007-eruption. These results confirmed that a multi-sensor-approach might provide a relevant contribution to investigate, monitor and characterize thermal volcanic activity in high-risk areas.en_US
dc.relation.ispartofRemote Sensingen
dc.relation.ispartofseries/11 (2019)en_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.titleThe July/August 2019 Lava Flows at the Sciara del Fuoco, Stromboli–Analysis from Multi-Sensor Infrared Satellite Imageryen_US
dc.description.pagenumberid 2879en_US
dc.relation.references1. Bertagnini, A.; Roberto, A.; Pompilio, M. Paroxysmal activity at Stromboli: Lessons from the past. Bull. Volcan. 2011, 73, 9, 1229–1243. doi:10.1007/s00445-011-0470-3. 2. Calvari, S.; Spampinato, L.; Bonaccorso, A.; Oppenheimer, C.; Rivalta, E.; Boschi, E. Lava effusion—A slow fuse for paroxysms at Stromboli volcano? Earth Planet. Sci. Lett. 2011, 301, 317–323. doi:10.1016/j.epsl.2010.11.015. 3. Ripepe, M.; Pistolesi, M.; Coppola, D.; Delle Donne, D.; Genco, R.; Lacanna, G.; Laiolo, M.; Marchetti, E.; Ulivieri, G.; Valade, S. Forecasting effusive dynamics and decompression rates by magma static model at open-vent volcanoes. Sci. Rep. 2017, 7, 3885. doi:10.1038/s41598-017-03833-3. 4. Neri, M.; Lanzafame, G.; Acocella, V. Dike emplacement and related hazard in volcanoes with sector collapse: The 2007 Stromboli eruption. J. Geol. Soc. Lond. 2008, 165, 883–886. doi:10.1144/0016-76492008-002. 5. Neri, M.; Lanzafame, G. Structural features of the 2007 Stromboli eruption. J. Volcanol. Geotherm. Res. 2009, 182, 137−144. doi:10.1016/j.jvolgeores.2008.07.021. 6. Calvari, S.; Bonaccorso, A.; Madonia, P.; Neri, M.; Liuzzo, M.; Salerno, G.; Behncke, B.; Caltabiano, T.; Cristaldi, A.; Giuffrida, G.; et al. Major eruptive style changes induced by structural modifications of a shallow conduit system: The 2007–2012 Stromboli case. Bull. Volcan. 2014, 76, 841. doi:10.1007/s00445-0140841-7. 7. Maramai, A.; Graziani, L.; Tinti, S. Tsunamis in the Aeolian Islands (southern Italy): A review. Mar. Geol. 2005, 215, 11–21. doi:10.1016/j.margeo.2004.03.018. 8. Rosi, M.; Pistolesi, M.; Bertagnini, A.; Landi-P, Pompilio, M.; Di Roberto, A. Stromboli volcano, Aeolian Islands (Italy): Present eruptive activity and hazards. Geol. Soc. Lond. Mem. 2013, 37, 473–490. doi:10.1144/M37.1. 9. Calvari, S.; Spampinato, L.; Lodato, L.; Harris, A.J.; Patrick, M.R.; Dehn, J.; Burton, M.R.; Andronico, D. Chronology and complex volcanic processes during the 2002–2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and surveys with a handheld thermal camera. J. Geophys. Res. Solid Earth 2005, 110. doi:10.1029/2004JB003129. 10. Harris, A.J.L.; Swabey, S.E.J.; Higgins, J. Automated thresholding of active lavas using AVHRR data. Int. J. Remote Sens. 1995, 16, 3681–3686. doi:10.1080/01431169508954654. 11. Lodato, L.; Spampinato, L.; Harris, A.; Calvari, S.; Dehn, J.; Patrick, M. The morphology and evolution of the Stromboli 2002–2003 lava flow field: An example of a basaltic flow field emplaced on a steep slope. Bull. Volcan. 2007, 69, 661–679. doi:10.1007/s00445-006-0101-6. 12. Calvari, S.; Lodato, L.; Steffke, A.; Cristaldi, A.; Harris, A.J.; Spampinato, L.; Boschi, E. The 2007 Stromboli eruption: Event chronology and effusion rates using thermal infrared data. J. Geophys. Res. Solid Earth 2010, 115. doi:10.1029/2009JB006478. 13. Ripepe, M.; Marchetti, E.; Ulivieri, G. Infrasonic monitoring at Stromboli volcano during the 2003 effusive eruption: Insights on the explosive and degassing process of an open conduit system. J. Geophys. Res. Solid Earth 2007, 112. doi:10.1029/2006JB004613. 14. Ripepe, M.; Delle Donne, D.; Genco, R.; Maggio, G.; Pistolesi, M.; Marchetti, E.; Lacanna, G.; Ulivieri, G.; Poggi, P. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption. Nat. Commun. 2015, 6, 6998. doi:10.1038/ncomms7998. 15. Di Traglia, F.; Calvari, S.; D’Auria, L.; Nolesini, T.; Bonaccorso, A.; Fornaciai, A.; Esposito, A.; Cristaldi, A.; Favalli, M.; Casagli, N. The 2014 Effusive Eruption at Stromboli: New Insights from In Situ and RemoteSensing Measurements. Remote Sens. 2018, 10, 2035. doi:10.3390/rs10122035. 16. Francis, P.W.; Rothery, D.A. Using the Landsat Thematic Mapper to detect and monitor active volcanoes: An example from Lascar volcano, northern Chile. Geology 1987, 15, 614–617. doi:10.1130/00917613(1987)15<614:UTLTMT>2.0.CO;2. 17. Wright, R.; Flynn, L.P.; Harris, A.J.L. Evolution of lava flow-fields at Mount Etna, 27–28 October 1999, observed by Landsat 7 ETM+. Bull. Volcan. 2001, 63, 1–7. doi:10.1007/s004450100124. 18. Kaneko, T.; Wooster, M.J.; Nakada, S. Exogenous and endogenous growth of the Unzen lava dome examined by satellite infrared image analysis. J. Volcan. Geotherm. Res. 2002, 116, 151−160. doi:10.1016/S0377-0273(02)00216-0. 19. Oppenheimer, C.; Francis, P. Remote sensing of heat, lava and fumarole emissions from Erta’Ale volcano, Ethiopia. Int. J. Remote Sens. 1997, 18, 1661–1692. doi:10.1080/014311697218043. 20. Harris, A.J.L.; Stevenson, D.S. Thermal observations of open degassing conduits and fumaroles at Stromboli and Vulcano using remotely-sensed data. J. Volcan. Geotherm. Res. 1997, 76, 175–198, doi:10.1016/S0377-0273(96)00097-2. 21. Oppenheimer, C. Volcanological applications of meteorological satellites. Int. J. Remote Sens. 1998, 19, 2829– 2864. doi:10.1080/014311698214307. 22. Bonaccorso, A.; Bonforte, A.; Calvari, S.; Del Negro, C.; Di Grazia, G.; Ganci, G.; Neri, M.; Vicari, A.; Boschi, E. The initial phases of the 2008–9 Mt. Etna eruption: A multi-disciplinary approach for hazard assessment, J. Geophys. Res. 2011, 116, B03203. doi:10.1029/2010JB007906. 23. Wright, R. MODVOLC: 14 years of autonomous observations of effusive volcanism from space. In Detecting, Modelling and Responding to Effusive Eruptions; Harris, A.J.L., de Groeve, T., Garel, F., Carn, S.A., Eds.; Geological Society Special Publications: London, UK, 2016; Volume 426, pp. 23–54. doi:10.1144/SP426.12. 24. Marchese, F.; Filizzola, C.; Genzano, N.; Mazzeo, G.; Pergola, N.; Tramutoli, V. Assessment and improvement of a Robust Satellite Technique (RST) for thermal monitoring of volcanoes. Remote Sens. Environ. 2011, 115–116, 1556–1563. doi:10.1016/j.rse.2011.02.014. 25. Coppola, D.; Laiolo, M.; Cigolini, C.; Delle Donne, D.; Ripepe, M. Enhanced volcanic hot-spot detection using MODIS IR data: Results from the MIROVA system. In Detecting, Modelling and Responding to Effusive Eruptions; Harris, A.J.L., de Groeve, T., Garel, F., Carn, S.A., Eds.; Geological Society Special Publications: London, UK, 2016; Volume 426. doi:10.1144/SP426.5. 26. AVA. ASTER Volcano Archive. Available online: (accessed on 20 August 2019). 27. Reath, K.; Pritchard, M.E.; Moruzzi, S.; Alcott, A.; Coppola, D.; Pieri, D. The AVTOD (ASTER Volcanic Thermal Output Database) Latin America archive. J. Volcan. Geotherm. Res. 2019, 376, 62−75. doi:10.1016/j.jvolgeores.2019.03.019. 28. Zakšek, K.; Hort, M.; Lorenz, E. Satellite and ground based thermal observation of the 2014 effusive eruption at Stromboli volcano. Remote Sens. 2015, 7, 17190–17211. doi:10.3390/rs71215876. 29. Plank, S.; Nolde, M.; Richter, R.; Fischer, C.; Martinis, S.; Riedlinger, T.; Schoepfer, E.; Klein, D. Monitoring of the 2015 Villarrica volcano eruption by means of DLR’s experimental TET-1 satellite. Remote Sens. 2018, 10, 1379. doi:10.3390/rs6064870. 30. Harris, A.J.L. Thermal Remote Sensing of Active Volcanoes—A User’s Manual; Cambridge University Press: Cambridge, UK, 2013. doi:10.1017/CBO9781139029346. 31. Harris, A.J.L.; de Groeve, T.; Garel, F.; Carn, S.A. (Eds.) Detecting, Modelling and Responding to Effusive Eruptions; Geological Society Special Publications: London, UK, 2016. doi:10.1144/SP426. 32. Harris, A.J.L.; Dehn, J.; Calvari, S. Lava effusion rate definition and measurement: A review. Bull. Volcan. 2007, 70, 1–22. doi:10.1007/s00445-007-0120-y. 33. Harris, A.J.L.; Rowland, S.K. FLOWGO: A kinematic thermos-rheological model for lava flowing in a channel. Bull. Volcan. 2001, 63, 20–44. doi:0.1007/s004450000120. 34. Ganci, G.A.; Vicari, A.; Cappello, A.; Del Negro, C. An emergent strategy for volcano hazard assessment: From thermal satellite monitoring to lava flow modelling. Remote Sens. Environ. 2012, 119, 197–207. doi:10.1016/j.rse.2011.12.021. 35. Calvari, S.; Neri, M.; Pinkerton, H. Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. J. Volcan. Geotherm. Res. 2003, 119, 107–123. doi:10.1029/2009JB006478. 36. Poland, M.P. Time-averaged discharge rate of subaerial lava at Kīlauea Volcano, Hawai’i, measured from TanDEM-X interferometry: Implications for magma supply and storage during 2011–2013. J. Geophys. Res. Solid Earth 2014, 119, 5464–5481. doi:10.1002/2014JB011132. 37. Coppola, D.; Ripepe, M.; Laiolo, M.; Cigolini, C. Modelling satellite-derived magma discharge to explain caldera collapse. Geology 2017, 45, 523–526. doi:10.1130/G38866.1. 38. Coppola, D.; Barsotti, S.; Cigolini, C.; Laiolo, G.M.; Pfeffer, M.A.; Ripepe, M. Monitoring the time-averaged discharge rates, volumes and emplacement style of large lava flows by using MIROVA system: The case of the 2014–2015 eruption at Holuhraun (Iceland). Ann. Geophys. 2018, 61. doi:10.4401/ag-7749. 39. Walter, T.R.; Haghighi, M.H.; Schneider, F.M.; Coppola, D.; Motagh, M.; Saul, J.; Babeyko, A.; Dahm, T.; Troll, V.R.; Tilmann, F.; et al. Complex hazard cascade culminating in the Anak Krakatau sector collapse. Nat. Commun. 2019, 10. doi:10.1038/s41467-019-12284-5. 40. ESA Sentinel Online. Available online: (accessed on 15 October 2019). 41. Pergola, N.; Marchese, F.; Tramutoli, V.; Filizzola, C.; Ciampa, M. Advanced satellite technique for volcanic activity monitoring and early warning. Ann. Geophys. 2008, 51, 287–301. doi:10.4401/ag-3049. 42. Higgins, J.; Harris, A. VAST: A program to locate and analyze volcanic thermal anomalies automatically from remotely sensed data. Comput. Geosci. 1997, 23, 627–645. doi:10.1016/S0098-3004(97)00039-3. 43. Pergola, N.; Marchese, F.; Tramutoli, V. Automated detection of thermal features of active volcanoes by means of infrared AVHRR records. Remote Sens. Environ. 2004, 93, 311–327. doi:10.1016/j.rse.2004.07.010. 44. Lombardo, V. AVHotRR: Near-real time routine for volcano monitoring using IR satellite data. In Detecting, Modelling and Responding to Effusive Eruptions; Harris, A.J.L., de Groeve, T., Garel, F., Carn, S.A., Eds.; Geological Society Special Publications: London, UK, 2016; Volume 426, pp. 73–92. doi:10.1144/SP426.18. 45. Mia, M.; Fujimitsu, Y.; Nishijima, J. Thermal activity monitoring of an active volcano using Landsat 8/OLITIRS sensor images: A case study at the Aso volcanic area in southwest Japan. Geosciences 2017, 7, 118. doi:10.3390/geosciences7040118. 46. Marchese, F.; Neri, M.; Falconieri, A.; Lacava, T.; Mazzeo, G.; Pergola, N.; Tramutoli, V. The Contribution of Multi-Sensor Infrared Satellite Observations to Monitor Mt. Etna (Italy) Activity during May to August 2016. Remote Sens. 2018, 10, 1948. doi:10.3390/rs10121948. 47. Valade, S.; Ley, A.; Massimetti, F.; D’Hondt, O.; Laiolo, M.; Coppola, D.; Loibl, D.; Hellwich, O.; Walter, T.R. Towards Global Volcano Monitoring Using Multisensor Sentinel Missions and Artificial Intelligence: The MOUNTS Monitoring System. Remote Sens. 2019, 11, 1528. doi:10.3390/rs11131528. 48. Richter, L.; Louis, J.; Berthelot, B. Sentinel-2 MSI—Level 2A Products Algorithm Theoretical Basis; S2PADATBD-0001; German Aerospace Center (DLR), Oberpfaffenhofen, Germany, VEGA: 2011. 49. Fire-Information-for-Resource-Management-System (FIRMS). Available online: (accessed on 31 October 2019). 50. Schroeder, W.; Giglio, L. Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m Active Fire Detection and Characterization Algorithm Theoretical Basis Document; University of Maryland, Washington DC, USA, 2016. 51. VIIRS Cloud Mask. CLDMSK_L2_VIIRS_SNPP. Available online: (accessed on 31 October 2019). 52. Tramutoli, V. Robust satellite techniques (RST) for natural and environmental hazards monitoring and mitigation: Theory and applications. In Proceedings of the 2007 International Workshop on the Analysis of Multi-temporal Remote Sensing Images, Provinciehuis Leuven, Belgium, 18–20 July 2007; pp. 1–6. doi:10.1109/MULTITEMP.2007.4293057. 53. Finkensieper, S.; Stengel, M.; Selbach, N.; Hollmann, R.; Werscheck, M.; Meirink, J.F. ICDR SEVIRI Clouds—Based on CLAAS-2 Methods, Satellite Application Facility on Climate Monitoring. 2018. Available online: (accessed on 15 October 2019). 54. Pergola, N.; Coviello, I.; Filizzola, C.; Lacava, T.; Marchese, F.; Paciello, R.; Tramutoli, V. A Review of RSTVOLC, an Original Algorithm for Automatic Detection and Near-Real-Time Monitoring of Volcanic Hotspots from Space; Geological Society Special Publications: London, UK, 2016; Volume 426, pp. 55−72. doi:10.1144/SP426.1. 55. Wooster, M.J.; Zhukov, B.; Oertel, D. Fire radiative energy for quantitative study of biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens. Environ. 2003, 86, 83−107. doi:10.1016/S0034-4257(03)00070-1. 56. Coppola, D.; Laiolo, M.; Piscopo, D.; Cigolini, C. Rheological control on the radiant density of active lava flows and domes. J. Volcan. Geotherm. Res. 2013, 249, 39−48. doi:10.1016/j.jvolgeores.2012.09.005. 57. Landi, P.; Corsaro, R.A.; Francalanci, L.; Civetta, L.; Miraglia, L.; Pompilio, K.; Tesoro, R. Magma dynamics during the 2007 Stromboli eruption (Aeolian Islands, Italy): Mineralogical, geochemical and isotopic data. J. Volcan. Geotherm. Res. 2009, 182, 255−268. doi:10.1016/j.jvolgeores.2008.11.010. 58. Istituto Nazionale di Geofisica e Vulcanologia (INGV). The 3 July 2019 paroxysm of Stromboli and its activity during the following days. Available online: (accessed on 15 July 2019). 59. Zanon, V.; Neri, M.; Pecora, E. Interpretation of data from the monitoring thermal camera: The case of Stromboli volcano (Aeolian Islands, Italy). Geol. Mag. 2009, 146, 591–601. doi:10.1017/S0016756809005937.en_US
dc.description.obiettivoSpecifico2V. Struttura e sistema di alimentazione dei vulcanien_US
dc.description.obiettivoSpecifico4V. Processi pre-eruttivien_US
dc.description.obiettivoSpecifico5V. Processi eruttivi e post-eruttivien_US
dc.description.obiettivoSpecifico6V. Pericolosità vulcanica e contributi alla stima del rischioen_US
dc.description.journalTypeJCR Journalen_US
dc.contributor.authorPlank, Simon-
dc.contributor.authorMarchese, Francesco-
dc.contributor.authorFilizzola, Carolina-
dc.contributor.authorPergola, Nicola-
dc.contributor.authorNeri, Marco-
dc.contributor.authorNolde, Michael-
dc.contributor.authorMartinis, Sandro-
dc.contributor.departmentGerman Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Muenchener Str. 20, 82234 Oberpfaffenhofen, Germanyen_US
dc.contributor.departmentNational Research Council of Italy (CNR), Institute of Methodologies for Environmental Analysis (IMAA), 85050 Tito Scalo, Italyen_US
dc.contributor.departmentNational Research Council of Italy (CNR), Institute of Methodologies for Environmental Analysis (IMAA), 85050 Tito Scalo, Italyen_US
dc.contributor.departmentNational Research Council of Italy (CNR), Institute of Methodologies for Environmental Analysis (IMAA), 85050 Tito Scalo, Italyen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen_US
dc.contributor.departmentGerman Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Muenchener Str. 20, 82234 Oberpfaffenhofen, Germanyen_US
dc.contributor.departmentNational Research Council of Italy (CNR), Institute of Methodologies for Environmental Analysis (IMAA), 85050 Tito Scalo, Italyen_US
item.fulltextWith Fulltext-
item.grantfulltextopen- Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Muenchener Str. 20, 82234 Oberpfaffenhofen, Germany- Nazionale delle Ricerche, Istituto di Metodologie per l’Analisi Ambientale, C. da S. Loja, 85050 Tito Scalo, Italy- di Metodologie per l’Analisi Ambientale (IMAA, CNR), Tito Scalo (PZ), Italy- Nazionale Delle Ricerche- Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia- Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Muenchener Str. 20, 82234 Oberpfaffenhofen, Germany- Research Council of Italy (CNR), Institute of Methodologies for Environmental Analysis (IMAA), 85050 Tito Scalo, Italy- Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
remotesensing-11-02879.pdfArticle8.36 MBAdobe PDFView/Open
Show simple item record


checked on Feb 10, 2021

Page view(s)

checked on Jul 3, 2022


checked on Jul 3, 2022

Google ScholarTM