Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/13374
DC FieldValueLanguage
dc.date.accessioned2020-03-04T06:38:12Z-
dc.date.available2020-03-04T06:38:12Z-
dc.date.issued2020-
dc.identifier.urihttp://hdl.handle.net/2122/13374-
dc.description.abstractThe 4.5 ka trachytic Plinian eruption of Agnano-Monte Spina is the largest magnitude event of the past 5 ka at Campi Flegrei caldera. The complete eruptive sequence consists of six members, three of which, named A, B and D, are characterized by the association of fallout and pyroclastic density current (PDC) deposits well preserved at proximal locations. In this study, we analyze the textural characteristics of the pumice clasts of the three major fallout deposits (A1, B1, D1) and of their associated PDC deposits (A2, B2, D2), and link them to the physical properties of magma in order to investigate conduit fluid dynamics. A combination of data (field work, grain-size and density measurements, vesicle number densities and size distributions, crystal content, water content) is used to set up the source term conditions for numerical simulations. Each fall/PDC transition is accompanied by distinctive changes in textural properties of the juveniles, recognized by a lowering in vesicle number densities of about one order of magnitude (from 108 to 107 cm−3), indicating a significant decrease in the magma ascent rate. Melt inclusions show a marked decrease in volatile content recurrent at each fall/PDC transition and indicate that the three main pulses of the eruption were fed by distinct and progressively deeper magma batches. Numerical simulations, taking into account magma properties derived from the textural analyses, and variations in initial water content, show decreases in the exit velocities and Mass Discharge Rate (MDR) consistent with such fall/PDC transitions. Different initial water contents together with changes in conduit diameters allow us to simulate the different column heights reconstructed for the three Plinian phases. The reconstructed scenario for the Agnano-Monte Spina eruption involves a stop-start behavior and a top-down trigger for the most voluminous and intense eruptive episode D.en_US
dc.language.isoEnglishen_US
dc.publisher.nameElsevieren_US
dc.relation.ispartofChemical Geologyen_US
dc.relation.ispartofseries/532 (2020)en_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectCampi flegreien_US
dc.subjectPlinian eruptionsen_US
dc.subjectTextural analysisen_US
dc.subjectVSDen_US
dc.subjectCSDen_US
dc.subjectNumerical modelingen_US
dc.titleModelling and physico-chemical constraints to the 4.5 ka Agnano-Monte Spina Plinian eruption (Campi Flegrei, Italy)en_US
dc.typearticleen
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber119301en_US
dc.identifier.doi10.1016/j.chemgeo.2019.119301en_US
dc.relation.referencesAdams, N.K., de Silva, S.L., Self, S., Salas, G., Schubring, S., Permenter, J.L., Arbesman, K., 2001. The physical volcanology of the 1600 eruption of Huaynaputina, southern Peru. Bull. Volcanol. 62 (8), 493–518. Adams, N.K., Houghton, B.F., Hildreth, W., 2006. Abrupt transitions during sustained explosive eruptions: examples from the 1912 eruption of Novarupta. Alaska. Bull. Volcanol. 69, 189–206. https://doi.org/10.1007/s00445-006-0067-4. AGIP, 1987. Geologia e Geofisica del sistema geotermico dei Campi Flegrei. DES, SERGMESG, S. Donato. . Alfano, F., Bonadonna, C., Gurioli, L., 2012. Insights into eruption dynamics from textural analysis: the case of the May, 2008, Chaitén eruption. Bull. Volcanol. 74, 2095–2108. https://doi.org/10.1007/s00445-012-0648-3. Arienzo, I., Moretti, R., Civetta, L., Orsi, G., Papale, P., 2010. The feeding system of Agnano–Monte Spina eruption (Campi Flegrei, Italy): dragging the past into present activity and future scenarios. Chem. Geol. 270, 135–147. https://doi.org/10.1016/j. chemgeo.2009.11.012. Bevilacqua, A., Isaia, R., Neri, A., Vitale, S., Aspinall, W.P., Bisson, M., Flandoli, F., Baxter, P.J., Bertagnini, A., Ongaro, T.E., 2015. Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 1. Vent opening maps. J. Geophys. Res. Solid Earth 120, 2309–2329. https://doi.org/10.1002/2014JB011775. Bevilacqua, A., Neri, A., Bisson, M., Esposti Ongaro, T., Flandoli, F., Isaia, R., Rosi, M., Vitale, S., 2017. The effects of vent location, event scale, and time forecasts on pyroclastic density current hazard maps at Campi Flegrei Caldera (Italy). Front. Earth Sci. 5, 1–16. https://doi.org/10.3389/feart.2017.00072. Blockley, S.P.E., Bronk, Ramsey C., Pyle, D.M., 2008. Improved age modelling and highprecision age estimates of late Quaternary tephras, for accurate palaeoclimate reconstruction. J. Volcanol. Geotherm. Res. 177, 251–262. Blower, J.D., Keating, J.P., Mader, H.M., Phillips, J.C., 2003. The evolution of bubble size distributions in volcanic eruptions. J. Volcanol. Geotherm. Res. 120, 1–23. Blundy, J., Cashman, K., 2008. Petrologic reconstruction of magmatic systems variables and processes. In: In: Putirka, K.D., Tepley, F.J. (Eds.), Minerals, Inclusions and Volcanic Processes, vol. 69. pp. 179–239. Burgisser, A., Gardner, J.E., 2005. Experimental constraints on degassing and permeability in volcanic conduit flow. Bull. Volcanol. 67, 42–56. https://doi.org/10.1007/ s00445-004-0359-5. Campagnola, S., 2014. Large-Scale Plinian Eruptions of the Colli Albani and the Campi Flegrei Volcanoes: Insights from Textural and Rheological Studies. PhD Thesis. Roma Tre Univeristy. Campagnola, S., Romano, C., Mastin, L.G., Vona, A., 2016a. Confort 15 model of conduit dynamics: applications to Pantelleria Green Tuff and Etna 122 BC eruptions. Contrib. Mineral. Petrol. 171, 60. https://doi.org/10.1007/s00410-016-1265-5. Campagnola, S., Vona, A., Romano, C., Giordano, G., 2016b. Crystallization kinetics and rheology of leucite-bearing tephriphonolite magmas from the Colli Albani volcano (Italy). Chem. Geol. 424, 12–29. https://doi.org/10.1016/j.chemgeo.2016.01.012. Carazzo, G., Kaminski, E., Tait, S., 2015. The timing and intensity of column collapse during explosive volcanic eruptions. Earth Planet. Sci. Lett. 411, 208–217. Carey, S., Sparks, R.S.J., 1986. Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull. Volcanol. 48, 109–125. Cas, R.F., Wright, J.V., 1987. Volcanic Successions: Modern and Ancient. Allen & Unwin, London, pp. 528. Cashman, K.V., 1990. Textural constraints on the kinetics of crystallization of igneous rocks. Rev. Mineral. Geochem. 24, 259–314. Cashman, K.V., Mangan, M., 1994. Physical aspects of magmatic degassing; II, Constraints on vesiculation processes from textural studies of eruptive products. Rev. Mineral. Geochem. 30, 447. Cashman, K.V., Giordano, G., 2014. Calderas and magma reservoirs. J. Volcanol. Geotherm. Res. 288, 28–45. https://doi.org/10.1016/j.jvolgeores.2014.09.007. Chiodini, G., Caliro, S., De Martino, P., Avino, R., Gherardi, F., 2012. Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations. Geology 40, 943–946. https://doi.org/10.1130/G33251.1. Christiansen, R.L., Peterson, D.W., 1981. Chronology of the 1980 eruptive activity. In: Lipman, P.W., Mullineaux, D.R. (Eds.), The 1980 Eruptions of Mount St. Helens, Washington: U.S. Geological Survey Professional Paper 1250, pp. 17–30. Cioni, R., Pistolesi, M., Rosi, M., et al., 2015. Plinian and subplinian eruptions. In: Sigurdson, H. (Ed.), Encyclopedia of Volcanoes, 2nd ed. Academic Press, San Diego, pp. 519–535. Civetta, L., Orsi, G., Pappalardo, L., Fisher, R.V., Heiken, G., Ort, M., 1997. Geochemical zoning, mingling, eruptive dynamics and depositional processes - The Campanian Ignimbrite, Campi Flegrei caldera, Italy. J. Volcanol. Geotherm. Res. 75, 183–219. https://doi.org/10.1016/S0377-0273(96)00027-3. Costa, A., 2005. Viscosity of high crystal content melts: dependence on solid fraction. Geophys. Res. Lett. 32, 5. https://doi.org/10.1029/2005gl024303. Costa, A., Dell’Erba, F., Di Vito, M.A., Isaia, R., Macedonio, G., Orsi, G., Pfeiffer, T., 2009. Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy). Bull. Volcanol. 71, 259–273. https://doi.org/10.1007/s00445-008-0220-3. Costantini, L., Houghton, B.F., Bonadonna, C., 2010. Constraints on eruption dynamics of basaltic explosive activity derived from chemical and microtextural study: the example of the Fontana Lapilli Plinian eruption, Nicaragua. J. Volcanol. Geotherm. Res. 189, 207–224. https://doi.org/10.1016/j.jvolgeores.2009.11.008. De Natale, G., Troise, C., Trigila, R., Dolfi, D., Chiarabba, C., 2004. Seismicity and 3-D substructure at Somma–Vesuvius volcano: evidence for magma quenching. Earth Planet. Sci. Lett. 221, 181–196. https://doi.org/10.1016/S0012-821X(04)00093-7. de Vita, S., Orsi, G., Civetta, L., Carandente, A., D’Antonio, M., Deino, A., di Cesare, T., Di Vito, M.A., Fisher, R.V., Isaia, R., Marotta, E., Necco, A., Ort, M., Pappalardo, L., Piochi, M., Southon, J., 1999. The Agnano – Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 91, 269–301. de’ Michieli Vitturi, M., Clarke, A.B., Neri, A., Voight, B., 2010d. Transient effects of magma ascent dynamics along a geometrically variable dome-feeding conduit. Earth Planet. Sci. Lett. 295, 541–553. https://doi.org/10.1016/j.epsl.2010.04.029. Deino, A., Orsi, G., de Vita, S., Piochi, M., 2004. The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera-Italy) assessed by 40Ar/ 39Ar dating method. J. Volcanol. Geotherm. Res. 133, 157–170. https://doi.org/10.1016/S0377- 0273(03)00396-2. Del Gaudio, C., Aquino, I., Ricciardi, G.P., Ricco, C., Scandone, R., 2010. Unrest episodes at Campi Flegrei: a reconstruction of vertical ground movements during 1905-2009. J. Volcanol. Geotherm. Res. 195, 48–56. https://doi.org/10.1016/j.jvolgeores.2010. 05.014. Dellino, P., Isaia, R., La Volpe, L., Orsi, G., 2001. Statistical analysis of textural data from complex pyroclastic sequences: implications for fragmentation processes of the Agnano-Monte Spina Tephra (4.1 ka), Phlegraean Fields, southern Italy. Bull. Volcanol. 63, 443–461. https://doi.org/10.1007/s004450100163. Dellino, P., Isaia, R., La Volpe, L., Orsi, G., 2004a. Interaction between particles transported by fallout and surge in the deposits of the Agnano–Monte Spina eruption (Campi Flegrei, Southern Italy). J. Volcanol. Geotherm. Res. 133, 193–210. https:// doi.org/10.1016/S0377-0273(03)00398-6. Dellino, P., Isaia, R., Veneruso, M., 2004b. Turbulent boundary layer shear flows as an approximation of base surges at Campi Flegrei (Southern Italy). J. Volcanol. Geotherm. Res. 133, 211–228. https://doi.org/10.1016/S0377-0273(03)00399-8. Dellino, P., Zimanowski, B., Büttner, R., La Volpe, L., Mele, D., Sulpizio, R., 2007. Largescale experiments on the mechanics of pyroclastic flows: Design, engineering, and first results. J. Geophys. Res. Solid Earth 112, 1–13. https://doi.org/10.1029/ 2006JB004313. Di Genova, D., Sicola, S., Romano, C., Vona, A., Fanara, S., Spina, L., 2017. Effect of iron and nanolites on Raman spectra of volcanic glasses: a reassessment of existing strategies to estimate the water content. Chem. Geol. 475, 76–86. https://doi.org/10. 1016/j.chemgeo.2017.10.035. Di Matteo, V., Carroll, M.R., Behrens, H., Vetere, F., Brooker, R.A., 2004. Water solubility in trachytic melts. Chem. Geol. 213, 187–196. https://doi.org/10.1016/j.chemgeo. 2004.08.042. Di Piazza, A., Vona, A., Mollo, S., De Astis, G., Soto, G.J., Romano, C., 2019. Unsteady magma discharge during the “El Retiro” subplinian eruption (Turrialba volcano, Costa Rica): insights from textural and petrological analyses. J. Volcanol. Geotherm. Res. 371, 101–115. https://doi.org/10.1016/j.jvolgeores.2019.01.004. Di Renzo, V., Arienzo, I., Civetta, L., D’Antonio, M., Tonarini, S., Di Vito, M.A., Orsi, G., 2011. The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem. Geol. 281, 227–241. https://doi.org/10.1016/j.chemgeo. 2010.12.010. Di Vito, M.A., Isaia, R., Orsi, G., Southon, J., De Vita, S., D’Antonio, M., Pappalardo, L., Piochi, M., 1999. Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 91, 221–246. Di Vito, M.A., Acocella, V., Aiello, G., Barra, D., Battaglia, M., Carandente, A., Del Gaudio, C., De Vita, S., Ricciardi, G.P., Ricco, C., Scandone, R., Terrasi, F., 2016. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption. Sci. Rep. 6, 1–9. https://doi.org/10.1038/srep32245. Dobran, F., 1992. Nonequilibrium flow in volcanic conduits and application to the eruptions of Mt. St. Helens on May 18, 1980, and Vesuvius in AD 79. J. Volcanol. Geotherm. Res. 49, 285–311. https://doi.org/10.1016/0377-0273(92)90019-A. Esposti Ongaro, T., Papale, P., Neri, A., Del Seppia, D., 2006. Influence of carbon dioxide on the large-scale dynamics of magmatic eruptions at Phlegrean Fields (Italy). Geophys. Res. Lett. 33, 6–9. https://doi.org/10.1029/2005GL025528. Fedele, L., Scarpati, C., Lanphere, M., Melluso, L., Morra, V., Perrotta, A., Ricci, G., 2008. The Breccia Museo formation, Campi Flegrei, southern Italy: geochronology, chemostratigraphy and relationship with the Campanian Ignimbrite eruption. Bull. Volcanol. 70, 1189–1219. https://doi.org/10.1007/s00445-008-0197-y. Fisher, R.V., Orsi, G., Ort, M., Heiken, G., 1993. Mobility of a large-volume pyroclastic flow - emplacement of the Campanian ignimbrite. Italy. J. Volcanol. Geotherm. Res. 56, 205–220. https://doi.org/10.1016/0377-0273(93)90017-L. Freda, C., Baker, D.R., Romano, C., Scarlato, P., 2003. Water diffusion in natural potassic melts. Geol. Soc. Lond., Spec. Publ. 213, 53–62. https://doi.org/10.1144/GSL.SP. 2003.213.01.04. Giordano, G., 1998. Facies characteristics and magma-water interaction of the White Trachytic Tuffs (Roccamonfina Volcano, southern Italy). Bull. Volcanol. 60, 10–26. https://doi.org/10.1007/s004450050213. Gonnermann, H.M., Manga, M., 2012. Dynamics of magma ascent in the volcanic conduit. Modeling Volcanic Processes: The Physics and Mathematics of Volcanism. pp. 55–84. Guidoboni, E., Ciuccarelli, C., 2011. The Campi Flegrei caldera: historical revision and new data on seismic crises, bradyseisms, the Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 AD). Bull. Volcanol. 73, 655–677. https://doi.org/ 10.1007/s00445-010-0430-3. Gurioli, L., Houghton, B.F., Cashman, K.V., Cioni, R., 2005. Complex changes in eruption dynamics during the 79 AD eruption of Vesuvius. Bull. Volcanol. 67, 144–159. https://doi.org/10.1007/s00445-004-0368-4. Gurioli, L., Harris, A., Houghton, B.F., Polacci, M., Ripepe, M., 2008. Textural and geophysical characterization of explosive basaltic activity at Villarrica volcano. J. Geophys. Res. 113, B08206. Hildreth, W., Fierstein, J., 2012. The Novarupta–Katmai Eruption of 1912—Largest Eruption of the Twentieth Century; Centennial Perspectives. US Geological Survey Professional, vol. 1791. pp. 259. Houghton, B.F., Carey, R.J., Cashman, K.V., Wilson, C.J.N., Hobden, B.J., Hammer, J.E., 2010. Diverse patterns of ascent, degassing, and eruption of rhyolite magma during the 1.8ka Taupo eruption, New Zealand: evidence from clast vesicularity. J. Volcanol. Geotherm. Res. 195, 31–47. https://doi.org/10.1016/j.jvolgeores.2010.06.002. Ihinger, P.D., Hervig, R.L., McMillan, P.F., 1994. Analytical methods for volatiles in glasses. Rev. Mineral. Geochem. 30, 67–121. Iovine, R.S., Fedele, L., Mazzeo, F.C., Arienzo, I., Cavallo, A., Wörner, G., Orsi, G., Civetta, L., Antonio, M.D., 2017. Timescales of Magmatic Processes Prior to the ∼ 4. 7 Ka Agnano-monte Spina Eruption (Campi Flegrei Caldera, Southern Italy) Based on Diffusion Chronometry from Sanidine Phenocrysts. https://doi.org/10.1007/s00445- 017-1101-4. Jaeger, J., Cook, N.G.W., Zimmerman, R., 2007. Fundamentals in Rock Mechanics, Fourth ed. Blackwell Publishing, London, pp. 475. Kawaguchi, R., Nishimura, T., Sato, H., 2013. Volcano inflation prior to an eruption: numerical simulations based on a 1-D magma flow model in an open conduit. Earth Planets Space 65, 1477–1489. https://doi.org/10.5047/eps.2013.05.005. Klug, C., Cashman, K.V., 1994. Vesiculation of May 18, 1980, Mount St. Helens magma. Geology 22, 468–472. Klug, C., Cashman, K.V., Bacon, C.R., 2002. Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake). Oregon. Bull. Volcanol. 64, 486–501. https://doi.org/10.1007/s00445-002-0230-5. La Spina, G., Burton, M., de’ Michieli Vitturi, M., Arzilli, F., 2016. Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics. Nat. Commun. 7, 13402. https://doi.org/10.1038/ncomms13402. Le Losq, C., Neuville, D.R., Moretti, R., Roux, J., 2012. Determination of water content in silicate glasses using Raman spectrometry: implications for the study of explosive volcanism. Am. Mineral. 97, 779–790. https://doi.org/10.2138/am.2012.3831. Lipman, P.W., Mullineaux, D.R., 1981. The 1980 Eruptions of Mount St. Helens, Washington. U.S. Geol. Surv. Prof. Pap. 1250. Lirer, L., Mastrolorenzo, G., Rolandi, G., 1987. Un evento pliniano nell’attività recente dei Campi Flegrei. Boll. Soc. Geol. It. 106, 461–473. Llewellin, E.W., Manga, M., 2005. Bubble suspension rheology and implications for conduit flow. J. Volcanol. Geotherm. Res. 143, 205–217. https://doi.org/10.1016/j. jvolgeores.2004.09.018. Lyakhovsky, V., Hurwitz, S., Navon, O., 1996. Bubble growth in rhyolitic melts: experimental and numerical investigation. Bull. Volcanol. 58, 19–32. Mader, H.M., 1998. Conduit flow and fragmentation. Geol. Soc. Lond., Spec. Publ. 145, 51–71. https://doi.org/10.1144/GSL.SP.1996.145.01.04. Mader, H.M., Llewellin, E.W., Müller, S.P., 2013. The rheology of two-phase magmas: a review and analysis. J. Volcanol. Geotherm. Res. 257, 135–158. https://doi.org/10. 1016/j.jvolgeores.2013.02.014. Mastin, L.G., 2002. Insights into volcanic conduit flow from an open-source numerical model. Geochem. Geophys. Geosyst. 3. https://doi.org/10.1029/2001GC000192. Mastin, L.G., Ghiorso, M.S., 2000. A Numerical Program for Steady-State Flow of Magma- Gas Mixtures through Vertical Eruptive Conduits. USGS Open-File Rep. 00-209. pp. 1–61. Mastin, L.G., Guffanti, M., Servranckx, R., Webley, P., Barsotti, S., Dean, K., Durant, A., Ewert, J.W., Neri, A., Rose, W.I., Schneider, D., Siebert, L., Stunder, B., Swanson, G., Tupper, A., Volentik, A., Waythomas, C.F., 2009. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J. Volcanol. Geotherm. Res. 186, 10–21. https://doi.org/10.1016/j. jvolgeores.2009.01.008. Mele, D., Dioguardi, F., Dellino, P., Isaia, R., Sulpizio, R., Braia, G., 2015. Hazard of pyroclastic density currents at the Campi Flegrei Caldera (Southern Italy) as deduced from the combined use of facies architecture, physical modeling and statistics of the impact parameters. J. Volcanol. Geotherm. Res. 299, 35–53. https://doi.org/10. 1016/j.jvolgeores.2015.04.002. Miyaji, N., Kan’no, A., Kanamaru, T., Mannen, K., 2011. High-resolution reconstruction of the Hoei eruption (AD 1707) of Fuji volcano, Japan. J. Volcanol. Geotherm. Res. 207, 113–129. https://doi.org/10.1016/j.jvolgeores.2011.06.013. Moitra, P., Gonnermann, H.M., Houghton, B.F., Giachetti, T., 2013. Relating vesicle shapes in pyroclasts to eruption styles. Bull. Volcanol. 75, 691. https://doi.org/10. 1007/s00445-013-0691-8. Morgan, D.J., Jerram, D.A., 2006. On estimating crystal shape for crystal size distribution analysis. J. Volcanol. Geotherm. Res. 154, 1–7. https://doi.org/10.1016/j.jvolgeores. 2005.09.016. Mujin, M., Nakamura, M., 2014. A nanolite record of eruption style transion. Geology 42 661–614. Okumura, S., Nakamura, M., Nakano, T., Uesugi, K., Tsuchiyama, A., 2010. Shear deformation experiments on vesicular rhyolite: implications for brittle fracturing, degassing, and compaction of magmas in volcanic conduits. J. Geophys. Res. 115, B06201. https://doi.org/10.1029/2009JB006904. Orsi, G., D’Antonio, M., de Vita, S., Gallo, G., 1992. The Neapolitan Yellow Tuff, a largemagnitude trachytic phreatoplinian eruption: eruptive dynamics, magma withdrawal and caldera collapse. J. Volcanol. Geotherm. Res. 53, 275–287. Orsi, G., Civetta, L., D’Antonio, M., Di Girolamo, P., Piochi, M., 1995. Step-filling and development of a three-layer magma chamber: the Neapolitan Yellow Tuff case history. J. Volcanol. Geotherm. Res. 67, 291–312. https://doi.org/10.1016/0377- 0273(94)00119-2. Orsi, G., de Vita, S., Di Vito, M.A., 1996. The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J. Volcanol. Geotherm. Res. 74, 179–214. https://doi.org/10.1016/S0377-0273(96)00063-7. Orsi, G., Civetta, L., Del Gaudio, C., De Vita, S., Di Vito, M.A., Isaia, R., Petrazzuoli, S.M., Ricciardi, G.P., Ricco, C., 1999. Short-term ground deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): an example of active block-resurgence in a densely populated area. J. Volcanol. Geotherm. Res. 91, 415–451. https://doi.org/ 10.1016/S0377-0273(99)00050-5. Orsi, G., Vito, M.D., Isaia, R., 2004. Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull. Volcanol. 66, 514–530. Orsi, G., Di Vito, M.A., Selva, J., Marzocchi, W., 2009. Long-term forecast of eruption style and size at Campi Flegrei caldera (Italy). Earth Planet. Sci. Lett. 287, 265–276. https://doi.org/10.1016/j.epsl.2009.08.013. Papale, P., Neri, A., Macedonio, G., 1998. The role of magma composition and water content in explosive eruptions. 1. Conduit ascent dynamics. J. Volcanol. Geotherm.Res. 87, 75–93. https://doi.org/10.1016/S0377-0273(98)00101-2. Papale, P., 1999. Strain-induced magma fragmentation in explosive eruptions. Nature 397, 425–428. Papale, P., Gresta, S., 2006. In: The Campi Flegrei, Proceedings of the Meeting “Frame Programme for the Meeting and Research Activity on Italian Volcanoes 2005–2007,’’ Report, INGV-DPC Proj. V3_2, 129 pp., Dip. per la Protezione Civile and Ist. Naz. di Geofis. e Vulcanol. Rome. Pardo, N., Cronin, S.J., Wright, H.M.N., Schipper, C.I., Smith, I., Stewart, B., 2014. Pyroclast textural variation as an indicator of eruption column steadiness in andesitic Plinian eruptions at Mt. Ruapehu. Bull. Volcanol. 76, 1–19. https://doi.org/10.1007/ s00445-014-0822-x. Pelullo, C., Arienzo, I., D’Antonio, M., Pappalardo, L., Petrosino, P., 2019. X-ray microtomographic and isotopic investigation to explore magma mixing as eruption trigger: the 4.1 B.P. Agnano Monte Spina (Campi Flegrei, Italy) plinian eruption case study. In: Rittman Conference. 31-January, 1st February, Rome. Pensa, A., Giordano, G., Cas, R.A.F., Porreca, M., 2015. Thermal state and implications for eruptive styles of the intra-Plinian and climactic ignimbrites of the 4.6 ka Fogo A eruption sequence, São Miguel, Azores. Bull. Volcanol. 77, 99. https://doi.org/10. 1007/s00445-015-0983-2. Piochi, M., Polacci, M., De Astis, G., Zanetti, A., Mangiacapra, A., Vannucci, R., Giordano, D., 2008. Texture and composition of pumices and scoriae from the Campi Flegrei caldera (Italy): implications on the dynamics of explosive eruptions. Geochem. Geophys. Geosyst. 9, Q03013. https://doi.org/10.1029/2007GC001746. Pistolesi, M., Bertagnini, A., Di Roberto, A., Isaia, R., Vona, A., Cioni, R., Giordano, G., 2017. The Baia–Fondi di Baia eruption at Campi Flegrei: stratigraphy and dynamics of a multi-stage caldera reactivation event. Bull. Volcanol. 79, 67. https://doi.org/10. 1007/s00445-017-1149-1. Polacci, M., Papale, P., Rosi, M., 2001. Textural heterogeneities in pumices from the climactic eruption of Mount Pinatubo, 15 June 1991, and implications for magma ascent dynamics. Bull. Volcanol. 63, 83–97. https://doi.org/10.1007/ s004450000123. Polacci, M., Pioli, L., Rosi, M., 2003. The Plinian phase of the Campanian Ignimbrite eruption (Phlegrean Fields, Italy): evidence from density measurements and textural characterization of pumice. Bull. Volcanol. 65, 418–432. https://doi.org/10.1007/ s00445-002-0268-4. Putirka, K., 2008. Thermometers and barometers for volcanic systems. In: In: Putirka, K.D., Tepley, F. (Eds.), Minerals, Inclusions and Volcanic Processes. Rev. Mineral. Geochem. 69. pp. 61–120. Roach, A.L., 2005. The Evolution of Silicic Magmatism in the Post-Caldera Volcanism of the Phlegrean Fields, Italy. Ph.D. thesis. Brown University, Providence, USA. Romano, C., Giordano, D., Papale, P., Mincione, V., Dingwell, D.B., Rosi, M., 2003. The dry and hydrous viscosities of alkaline melts from Vesuvius and Phlegrean Fields. Chem. Geol. 202, 23–38. https://doi.org/10.1016/s0009-2541(03)00208-0. Rosi, M., Santacroce, R., 1984. Volcanic hazard assessment in the Phlegraean Fields: a contribution based on stratigraphic and historical data. Bull. Volcanol. 47, 359–370. https://doi.org/10.1007/BF01961567. Rosi, M., Vezzoli, L., Aleotti, P., De Censi, M., 1996. Interaction between caldera collapse and eruptive dynamics during The Campania Ignimbrite eruption, Phlegraean Fields, Italy. Bull. Volcanol. 57, 541–554. Rosi, M., Paladio-Melosantos, M.L., Di Muro, A., Leoni, R., Bacolcol, T., 2001. Fall vs flow activity during the 1991 climactic eruption of Pinatubo Volcano (Philippines). Bull. Volcanol. 62, 549–566. https://doi.org/10.1007/s004450000118. Rust, A.C., Cashman, K.V., Wallace, P.J., 2004. Magma degassing buffered by vapor flow through brecciated conduit margins. Geology 32, 349. Rutherford, M.J., 2008. Magma ascent rates. Rev. Mineral. 69, 241–271. Sable, J.E., Houghton, B.F., Del Carlo, P., Coltelli, M., 2006. Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic Plinian eruption: Evidence from clast microtextures. J. Volcanol. Geotherm. Res. 158, 333–354. https://doi.org/10.1016/j.jvolgeores.2006.07.006. Shea, T., Houghton, B.F., Gurioli, L., Cashman, K.V., Hammer, J.E., Hobden, B.J., 2010. Textural studies of vesicles in volcanic rocks: an integrated methodology. J. Volcanol. Geotherm. Res. 190, 271–289. https://doi.org/10.1016/j.jvolgeores.2009.12.003. Shea, T., Gurioli, L., Houghton, B.F., Cioni, R., Cashman, K.V., 2011. Column collapse and generation of pyroclastic density currents during the A.D. 79 eruption of Vesuvius: the role of pyroclast density. Geology 39, 695–698. https://doi.org/10.1130/ G32092.1. Shea, T., Gurioli, L., Houghton, B.F., 2012. Transitions between fall phases and pyroclastic density currents during the AD 79 eruption at Vesuvius: building a transient conduit model from the textural and volatile record. Bull. Volcanol. 74, 2363–2381. https://doi.org/10.1007/s00445-012-0668-z. Shea, T., Hellebrand, E., Gurioli, L., Hugh, T., 2014. Conduit- to localized-scale degassing during Plinian eruptions: insights from major element and volatile (Cl and H2O) analysis within Vesuvius AD79 pumice. J. Petrol. 55 (2), 315–344. https://doi.org/ 10.1093/petrology/egt069. Shea, T., 2017. Bubble nucleation in magmas: a dominantly heterogeneous process? J. Volcanol. Geotherm. Res. 343, 155–170. https://doi.org/10.1016/j.jvolgeores.2017. 06.025. Smith, V.C., Isaia, R., Pearce, N.J.G., 2011. Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers. Quat. Sci. Rev. 30, 3638–3660. https://doi.org/10.1016/j. quascirev.2011.07.012. Sparks, R.S.J., 1978. The dynamics of bubble formation and growth in magmas: a review and analysis. J. Volcanol. Geotherm. Res. 3, 1–37. Suzuki, Y.J., Koyaguchi, T., 2012. 3-D numerical simulations of eruption column collapse: effects of vent size on pressure-balanced jet/plumes. J. Volcanol. Geotherm. Res. 221–222, 1–13. https://doi.org/10.1016/j.jvolgeores.2012.01.013. C. Romano, et al. Chemical Geology 532 (2020) 119301 Toramaru, A., 1989. Vesiculation process and bubble size distributions in ascending magmas with constant velocities. J. Geophys. Res. 94, 17523–17542. Toramaru, A., 2006. BND (bubble number density) decompression rate meter for explosive volcanic eruptions. J. Volcanol. Geotherm. Res. 154, 303–316. https://doi. org/10.1016/j.jvolgeores.2006.03.027. Trolese, M., Cerminara, M., Esposti Ongaro, T., Giordano, G., 2019. The footprint of column collapse regimes on pyroclastic flow temperatures and plume heights. Nat. Commun. 10. https://doi.org/10.1038/s41467-019-10337-3. Tuffen, H., Dingwell, D.B., Pinkerton, H., 2003. Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31, 1089. https://doi.org/ 10.1130/G19777.1. Vinkler, A.P., Cashman, K.V., Giordano, G., Groppelli, G., 2012. Evolution of the mafic Villa Senni caldera-forming eruption at Colli Albani volcano, Italy, indicated by textural analysis of juvenile fragments. J. Volcanol. Geotherm. Res. 235–236, 37–54. https://doi.org/10.1016/j.jvolgeores.2012.03.006. Vona, A., Romano, C., Dingwell, D.B., Giordano, D., 2011. The rheology of crystal-bearing basaltic magmas from Stromboli and Etna. Geochim. Cosmochim. Acta 75, 3214–3236. https://doi.org/10.1016/j.gca.2011.03.031. Vona, A., Ryan, A.G., Russell, J.K., Romano, C., 2016. Models for viscosity and shear localization in bubble-rich magmas. Earth Planet. Sci. Lett. 449, 26–38. https://doi.org/10.1016/j.epsl.2016.05.029. Wilson, L., Sparks, R.S.J., Huang, T.C., Watkins, N.D., 1978. The control of volcanic column heights by eruption energetics and dynamics. J. Geophys. Res. 83, B4. Wilson, L., Sparks, R.S.J., Walker, G.P.L., 1980. Explosive volcanic eruptions - IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophys. J. R. Astron. Soc. 63, 117–148. Wohletz, K., Orsi, G., de Vita, S., 1995. Eruptive mechanisms of the Neapolitan Yellow Tuff interpreted from stratigraphic, chemical, and granulometric data. J. Volcanol. Geotherm. Res. 67, 263–290. https://doi.org/10.1016/0377-0273(95)00002-C. Wright, H.M.N., Folkes, C.B., Cas, R.A.F., Cashman, K.V., 2011. Heterogeneous pumice populations in the 2.08-Ma Cerro Galán Ignimbrite: implications for magma recharge and ascent preceding a large-volume silicic eruption. Bull. Volcanol. 73, 1513–1533. https://doi.org/10.1007/s00445-011-0525-5. Yasui, M., Koyaguchi, T., 2004. Sequence and eruptive style of the 1783 eruption of Asama Volcano, central Japan: a case study of an andesitic explosive eruption generating fountain-fed lava flow, pumice fall, scoria flow and forming a cone. Bull. Volcanol. 66, 243–262. https://doi.org/10.1007/s00445-003-0308-8. Zollo, A., Maercklin, N., Vassallo, M., Dello Iacono, D., Virieux, J., Gasparini, P., 2008. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys. Res. Lett. 35, 0–5. https://doi.org/10.1029/2008GL034.en_US
dc.description.obiettivoSpecifico4V. Processi pre-eruttivien_US
dc.description.journalTypeJCR Journalen_US
dc.contributor.authorRomano, Claudia-
dc.contributor.authorVona, A.-
dc.contributor.authorCampagnola, S-
dc.contributor.authorGiordano, G.-
dc.contributor.authorArienzo, Ilenia-
dc.contributor.authorIsaia, Roberto-
dc.contributor.departmentDipartimento di Scienze, Università degli Studi Roma Tre, L.go San Leonardo Murialdo 1, 00146 Rome, Italyen_US
dc.contributor.departmentDipartimento di Scienze, Università degli Studi Roma Tre, L.go San Leonardo Murialdo 1, 00146 Rome, Italyen_US
dc.contributor.departmentDipartimento di Scienze, Università degli Studi Roma Tre, L.go San Leonardo Murialdo 1, 00146 Rome, Italyen_US
dc.contributor.departmentDipartimento di Scienze, Università degli Studi Roma Tre, L.go San Leonardo Murialdo 1, 00146 Rome, Italyen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità degli Studi di Roma Tre, Dipartimento di Scienze-
crisitem.author.deptDipartimento di Scienze, Università degli Studi Roma Tre, L.go San Leonardo Murialdo 1, 00146 Rome, Italy-
crisitem.author.deptUniversità degli Studi di Roma Tre-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0003-1442-7729-
crisitem.author.orcid0000-0002-5483-5623-
crisitem.author.orcid0000-0002-5819-443X-
crisitem.author.orcid0000-0002-6213-056X-
crisitem.author.orcid0000-0001-7277-2358-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Romano et al., 2020.pdf3.2 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

2
checked on Feb 10, 2021

Page view(s)

671
checked on Apr 27, 2024

Download(s)

4
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric