Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1329
DC FieldValueLanguage
dc.contributor.authorallMorelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallDanesi, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.date.accessioned2006-07-05T14:28:12Zen
dc.date.available2006-07-05T14:28:12Zen
dc.date.issued2004-07en
dc.identifier.urihttp://hdl.handle.net/2122/1329en
dc.description.abstractTomographic analysis of seismic surface waves can map upper mantle structure under the Antarctic plate with reliability and fairly good detail, making the best use of the relatively limited dataset currently available. The large-scale features of Antarctic upper mantle agree with global views of Earth structure under oceans and continents. Low seismic velocities map the hot thermal anomaly under mid-ocean ridges down to approximately 150 km, stronger and wider under faster-spreading ridges. Cold continental roots show as seismically fast material under the older part of the continent (East), while the West Antarctic Rift System has a clearly slow wave signature. The seismically imaged lithosphere has variable thickness under the craton. It appears rather regular and about 220 km thick under Dronning Maud Land, but it deepens in the region stretching below Enderby Land, Gamburtsev Mountains, to Wilkes Land, where it reaches its maximum thickness, in excess of 250 km. This variability in lithospheric thickness is analogous to what has been found under other continents. The high velocity anomaly imaging cratonic roots appears to spread out, as a cool halo, off the passive continental margins, but terminates sharply towards the West Antarctic Rift System. The fast/slow contact runs under the Transantarctic Mountains and it is particularly sharp in the Ross Embayment, where seismically slow material, imaged down to 250 km, can be interpreted as the deep-seated hot anomaly related to a mantle plume.en
dc.description.sponsorshipResearch supported by Programma Nazionale di Ricerche in Antartide.en
dc.format.extent627371 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.subjectSeismic tomographyen
dc.subjectAntarcticaen
dc.subjectLithosphereen
dc.subjectSurface wavesen
dc.subjectContinental Rootsen
dc.subjectPrecambrian cratonsen
dc.titleSeismic Imaging of the Antarctic Continental Lithosphere: a Reviewen
dc.typearticleen
dc.description.statusPublisheden
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropyen
dc.relation.referencesArtemieva, I.M., Mooney, W.D., Perchuc, E., Thybo, H., 2002. Processes of lithosphere evolution: new evidence on the structure of the continental crust and upper mantle. Tectonophysics 358, 1– 15. Bannister, S., Snieder, R.K., Passier, M.L., 2000. Shear-wave velocities under the Transantarctic Mountains and Terror Rift from surface wave inversion. Geophys. Res. Lett. 27, 281– 284. Bassin, C., Laske, G., Masters, G., 2000. The current limits of resolution for surface wave tomography in North America. EOS Trans. Am. Geophys. Soc. 81, F897. http://www.mahi. ucsd.edu/Gabi/rem.html. Behrendt, J.C., 1999. Crustal and lithospheric structure of the West Antarctic Rift System from geophysical investigations—a review. Glob. Planet. Change 23, 25–44. Bentley, C.R., 1973. Crustal structure of Antarctica from geophysical evidence—a review. In: Oliver, R.L., James, P.R., Jago, J.B. (Eds.), Antarctic Earth Science. Aust. Acad. of Sci., Canberra, pp. 491–497. Danesi, S., Morelli, A., 2000. Group velocity of Rayleigh waves in the Antarctic region. Phys. Earth Planet. Inter. 122, 55–66. Danesi, S., Morelli, A., 2001. Structure of the upper mantle under the Antarctic plate from surface wave tomography. Geophys. Res. Lett. 28, 4395– 4398. Debayle, E., Kennett, B.L.N., 2000. The Australian continental upper mantle: structure and deformation inferred from surface waves. J. Geophys. Res. 105, 25423–25450. Dziewonski, A.M., Anderson, D.L., 1981. Preliminary reference earth model. Phys. Earth Planet. Inter. 25, 297– 356. Ekstro¨m, G., Dziewonski, A.M., 1998. The unique anisotropy of the Pacific upper mantle. Nature 394, 168–172. Ekstro¨m, G., Tromp, J., Larson, E.W.F., 1997. Measurements and global models of surface wave propagation. J. Geophys. Res. 102, 8137– 8157. Fleitout, L., Yuen, D.A., 1984. Steady state, secondary convection beneath lithospheric plates with temperature- and pressure- dependent viscosity. J. Geophys. Res. 89, 9227–9244. Gung, Y., Panning, M., Romanowicz, B., 2003. Global anisotropy and the thickness of continents. Nature 422, 707– 711. Jaupart, C., Mareschal, J.C., 1999. The thermal structure and thickness of continental roots. Lithos 48, 93–114. Jordan, T.H., 1975. The continental lithosphere. Rev. Geophys. Space Phys. 13, 1 –12. Lawver, L.A., Gahagan, L.M., 2003. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 198, 11 –37. Megnin, C., Romanowicz, B., 2000. The 3D shear velocity structure of the mantle from the inversion of body, surface and higher mode waveforms. Geophys. J. Int. 143, 709– 728. Montagner, J.-P., Tanimoto, T., 1991. Global upper mantle tomography of seismic velocities and anisotropies. J. Geophys. Res. 96, 20251– 20337. Nyblade, A.A., 2001. Hard-cored continents. Nature 411, 38–39. Plomerova´, J., Kouba, D., Babusˆka, V., 2002. Mapping the lithosphere – asthenosphere boundary through changes in surfacewave anisotropy. Tectonophysics 358, 175– 185. Ritsema, J., van Heijst, H.J., Woodhouse, J.H., 1999. Complex shear wave velocity structure imaged beneath Africa and Iceland. Science 286, 1925– 1928. Ritzwoller, M.H., Shapiro, N.M., Levshin, A.L., Leahy, G.M., 2001. Crustal and upper mantle structure beneath Antarctica and surrounding oceans. J. Geophys. Res. 106, 30645– 30670. Rocchi, S., Armienti, P., D’Orazio, M., Tonarini, S., Wijbrans, J.R., Di Vincenzo, G., 2002. Cenozoic magmatism in the western Ross Embayment: role of mantle plume versus plate dynamics in the development of the West Antarctic Rift System. J. Geophys. Res. 107 (doi:10.1029/2001JB000515). Roult, G., Rouland, D., 1994. Antarctica I: deep structure investigations inferred from seismology: a review. Phys. Earth Planet. Inter. 84, 15– 32. Roult, G., Rouland, D., Montagner, J.-P., 1994. Antarctica II: uppermantle structure from velocity and anisotropy. Phys. Earth Planet. Inter. 4, 33–57. Simons, F.J., van der Hilst, R.D., 2002. Age-dependent seismic thickness and mechanical strength of the Australian lithosphere. Geophys. Res. Lett. 29, 1529 (doi: 10.1029/2002GL014962). Simons, F.J., Zielhuis, A., van der Hilst, R.D., 1999. The deep structure of the Australian continent from surface wave tomography. Lithos 48, 17–43. ten Brink, U.S., Hackney, R.I., Bannister, S., Stern, T.A., Makovsky, Y., 1997. Uplift of the Transantarctic Mountains and the 164 A. Morelli, S. Danesi / Global and Planetary Change 42 (2004) 155–165 bedrock beneath the East Antarctic ice sheet. J. Geophys. Res. 102, 27603– 27621. Torsvik, T.H., 2003. The Rodinia jigsaw puzzle. Science 300, 1379–1381. Trampert, J., Woodhouse, J.H., 2001. Assessment of global phase velocity models. Geophys. J. Int. 144, 165–174. van der Hilst, R.D., Kennett, B.L.N., Christie, D., Grant, J., 1994. Project SKIPPY explores the lithosphere and mantle beneath Australia. EOS Trans. AGU 75, 177– 181. van der Wateren, F.M., Cloetingh, S.A.P.L., 1999. Feedbacks of lithosphere dynamics and environmental change of the CenozoicWest Antarctic Rift System. Glob. Planet. Change 23, 1 – 24. van Heijst, H.J., Woodhouse, J.H., 1999. Global high-resolution phase velocity distribution of overtone and fundamental mode surface waves determined by mode branch stripping. Geophys. J. Int. 137, 601–620. Vdovin, O., Rial, J.A., Levshin, A.L., Ritzwoller, M.H., 1999. Group-velocity tomography of South America and the surrounding oceans. Geophys. J. Int. 136, 324– 340. Wessel, P., Smith, W.H.F., 1991. Free software helps map and display data. EOS Trans. AGU 72, 441. Woodhouse, J.H., Dziewonski, A.M., 1984. Mapping the upper mantle: three dimensional modeling of Earth structure by inversion of seismic waveforms. J. Geophys. Res. 89, 5953– 5986. Wo¨rner, 1999. Lithospheric dynamics and mantle sources of alkaline magmatism of the Cenozoic West Antarctic Rift System. Glob. Planet. Change 23, 61– 77. A. Morelli, S. Danesi / Global and Planetary Chen
dc.description.fulltextreserveden
dc.contributor.authorMorelli, A.en
dc.contributor.authorDanesi, S.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0002-7400-8676-
crisitem.author.orcid0000-0002-7884-8242-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Manuscripts
Manuscripts
Files in This Item:
File Description SizeFormat Existing users please Login
Morelli.Danesi.gpc04.pdf612.67 kBAdobe PDF
Show simple item record

Page view(s) 50

311
checked on Apr 17, 2024

Download(s)

29
checked on Apr 17, 2024

Google ScholarTM

Check