Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/13271
Authors: Valentini, Alessandro* 
DuRoss, Christopher* 
Field, Edward* 
Gold, Ryan* 
Briggs, Richard* 
Visini, Francesco* 
Pace, Bruno* 
Title: Relaxing Segmentation on the Wasatch Fault Zone: Impact on Seismic Hazard
Journal: Bulletin of the Seismological Society of America 
Series/Report no.: 1/110 (2020)
Issue Date: 2020
DOI: 10.1785/0120190088
Abstract: The multisegment Wasatch fault zone is a well-studied normal fault in the western United States that has paleoseismic evidence of recurrent Holocene surface-faulting earthquakes. Along the 270 km long central part of the fault, four primary structural complexities provide possible along-strike limits to these ruptures and form the basis for models of fault segmentation. Here, we assess the impact that the Wasatch fault segmentation model has on seismic hazard by evaluating the timeindependent long-term rate of ruptures on the fault that satisfy fault-slip rates and paleoseismic event rates, adapting standard inverse theory used in the Uniform California Earthquake Rupture Forecast, Version 3, and implementing a segmentation constraint in which ruptures across primary structural complexities are penalized. We define three models with varying degrees of rupture penalization: (1) segmented (ruptures confined to individual segments), (2) penalized (multisegment ruptures allowed, but penalized), and (3) unsegmented (all ruptures allowed). Seismic-hazard results show that, on average, hazard is highest for the segmented model, in which seismicmomentisaccommodatedbyfrequentmoderate(momentmagnitudeMw 6.2– 6.8) earthquakes. The unsegmented model yields the lowest average seismic hazard becausepartoftheseismicmomentisaccommodatedbylarge(Mw 6.9–7.9)butinfrequent ruptures. We compare these results to model differences derived from other inputs such as slip rate and magnitude scaling relations and conclude that segmentation exerts a primary control on seismic hazard. This study demonstrates the need for additional geologic constraints on rupture extent and methods by which these observations can be included in hazard-modeling efforts.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat Existing users please Login
Valentini_etal_2019_RelaxingSegmentation.pdf6.01 MBAdobe PDF
Show full item record

WEB OF SCIENCETM
Citations

2
checked on Feb 10, 2021

Page view(s)

222
checked on Apr 17, 2024

Download(s)

4
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric