Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/1277
DC FieldValueLanguage
dc.contributor.authorallLavenda, B. H.; Università di Camerino (MC), Italyen
dc.contributor.authorallCipollone, E.; ational Centre for Research on Thermodynamics, ENEA-CR Casaccia, S. Maria di Galeria, Roma, Italyen
dc.date.accessioned2006-07-05T08:13:48Zen
dc.date.available2006-07-05T08:13:48Zen
dc.date.issued2000-06en
dc.identifier.urihttp://hdl.handle.net/2122/1277en
dc.description.abstractA compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershock sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Fréchet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions shows that self-similar power laws are transformed into nonscaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Fréchet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same Catalogue of Chinese Earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Fréchet distribution. Earthquaketemperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.en
dc.format.extent6961355 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofseries3/43 (2000)en
dc.subjectGutemberg-Richter and Pareto lawsen
dc.subjectFréchet and Gumbel distributions for energy and magnitudeen
dc.subjectcompound Poisson processesen
dc.subjectearthquake temperature and volumeen
dc.subjectupper order statisticsen
dc.subjectmaximum earthquake energyen
dc.titleExtreme value statistics and thermodynamics of earthquakes: large earthquakesen
dc.typearticleen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.04. Statistical analysisen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorLavenda, B. H.en
dc.contributor.authorCipollone, E.en
dc.contributor.departmentUniversità di Camerino (MC), Italyen
dc.contributor.departmentational Centre for Research on Thermodynamics, ENEA-CR Casaccia, S. Maria di Galeria, Roma, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità di Camerino (MC), Italy-
crisitem.author.deptNational Centre for Research on Thermodynamics, ENEA-CR Casaccia, S. Maria di Galeria, Roma, Italy-
crisitem.classification.parent05. General-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
03.pdf6.8 MBAdobe PDFView/Open
Show simple item record

Page view(s) 5

569
checked on Mar 27, 2024

Download(s) 10

574
checked on Mar 27, 2024

Google ScholarTM

Check