Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/12641
DC FieldValueLanguage
dc.date.accessioned2019-05-10T07:19:44Zen
dc.date.available2019-05-10T07:19:44Zen
dc.date.issued2019-05en
dc.identifier.urihttp://hdl.handle.net/2122/12641en
dc.description.abstractLand Surface Temperature (LST) from satellite data is a key component in many aspects of environmental research. In volcanic areas, LST is used to detect ground thermal anomalies providing a supplementary tool to monitor the activity status of a particular volcano. In this work, we describe a procedure aimed at identifying spatial thermal anomalies in thermal infrared (TIR) satellite frames which are corrected for the seasonal influence by using TIR images from ground stations. The procedure was applied to the volcanic area of Campi Flegrei (Italy) using TIR ASTER and Landsat 8 satellite imagery and TIR ground images acquired from the Thermal Infrared volcanic surveillance Network (TIRNet) (INGV, Osservatorio Vesuviano). The continuous TIRNet time-series images were processed to evaluate the seasonal component which was used to correct the surface temperatures estimated by the satellite’s discrete data. The results showed a good correspondence between de-seasoned time series of surface ground temperatures and satellite temperatures. The seasonal correction of satellite surface temperatures allows monitoring of the surface thermal field to be extended to all the satellite frames, covering a wide portion of Campi Flegrei volcanic area.en
dc.description.sponsorshipPOR (Programma Operativo Regionale) Campania FESR (Fondo Europeo per lo Sviluppo Regionale) 2007–2013—Progetto SISTEMA (Sistema Integrato di Sorveglianza del TErritorio con Metodologie Aerospaziali). The ASTER L1T and ASTER05 data were retrieved from the online Data tool, courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, [https://earthexplorer.usgs.gov/]. Landsat 8 L1T processing, archiving, and distribution are performed by the USGS.en
dc.language.isoEnglishen
dc.relation.ispartofRemote Sensingen
dc.relation.ispartofseries/11(2019)en
dc.rightsCC0 1.0 Universalen
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/en
dc.subjectland surface temperatureen
dc.subjectthermal infrared dataen
dc.subjectremote sensing multiscale monitoringen
dc.subjectseasonality removalen
dc.subjectCampi Flegreien
dc.titleSurface Temperature Multiscale Monitoring by Thermal Infrared Satellite and Ground Images at Campi Flegrei Volcanic Area (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberid 1007en
dc.identifier.URLhttps://www.mdpi.com/2072-4292/11/9/1007en
dc.subject.INGV04.08. Volcanologyen
dc.identifier.doi10.3390/rs11091007en
dc.relation.referencesLa Rocca, M.; Galluzzo, D. Seismic monitoring of Campi Flegrei and Vesuvius by stand-alone instruments. Ann. Geophys. 2015, 58, S0544. [CrossRef] 2. Sansivero, F.; Vilardo, G.; De Martino, P.; Augusti, V.; Chiodini, G. Campi Flegrei volcanic surveillance by thermal IR continuous monitoring. In Proceedings of the 11th International Conference on Quantitative InfraRed Thermography, Naples, Italy, 11–14 June 2012. 3. De Martino, P.; Tammaro, U.; Obrizzo, F. GPS time series at Campi Flegrei caldera (2000–2013). Ann. Geophys. 2014, 57, 0213. 4. Vilardo, G.; Sansivero, F.; Chiodini, G. Long-term TIR imagery processing for spatiotemporal monitoring of surface thermal features in volcanic environment: A case study in the Campi Flegrei (Southern Italy). J. Geophys. Res. Solid Earth 2015, 120, 812–826. [CrossRef] 5. Calvari, S.; Lodato, L.; Spampinato, L. Monitoring active volcanoes using a handheld thermal camera. Proc. SPIE 2004, 5405, 199–210. 6. Chiodini, G.; Vilardo, G.; Augusti, V.; Granieri, D.; Caliro, S.; Minopoli, C.; Terranova, C. Thermal monitoring of hydrothermal activity by permanent infrared automatic stations: Results obtained at Solfatara di Pozzuoli, Campi Flegrei (Italy). J. Geophys. Res. Solid Earth 2007, 112. [CrossRef] 7. Walter, T.R.; Legrand, D.; Granados, H.D.; Reyes, G.; Arámbula, R. Volcanic eruption monitoring by thermal image correlation: Pixel o sets show episodic dome growth of the Colima volcano. J. Geophys. Res. Solid Earth 2013, 118, 1408–1419. [CrossRef] 8. Patrick, M.R.; Kauahikaua, J.; Orr, T.; Davies, A.; Ramsey, M. Operational thermal remote sensing and lava flow monitoring at the Hawaiian Volcano Observatory. Geol. Soc. Lond. Spec. Publ. 2016, 426, 489–503. [CrossRef] 9. Mia, M.B.; Fujimitsu, Y.; Nishijima, J. Thermal Activity Monitoring of an Active Volcano Using Landsat 8/OLI-TIRS Sensor Images: A Case Study at the Aso Volcanic Area in Southwest Japan. Geosciences 2017, 7, 118. 10. Blackett, M. An overview of infrared remote sensing of volcanic activity. J. Imaging 2017, 3, 13. [CrossRef] 11. Pieri, D.; Abrams, M. ASTER watches the world’s volcanoes: Anew paradigm for volcanological observations from orbit. J. Volcanol. Geotherm. Res. 2004, 135, 13–28. [CrossRef] 12. Carter, A.; Ramsey, M. Long-term volcanic activity at Shiveluch volcano: Nine years of ASTER Spaceborne thermal infrared observations. Remote Sens. 2010, 2, 2571–2583. [CrossRef] 13. Ramsey, M.S. What more have we learned from thermal infrared remote sensing of active volcanoes other than they are hot? In Proceedings of the American Geophysical Union, Fall Meeting 2009, San Francisco, CA, USA, 14–18 December 2009. 14. Ramsey, M.S.; Flynn, L.P. Strategies, insights, and the recent advances in volcanic monitoring and mapping with data from NASA’s Earth Observing System. J. Volcanol. Geotherm. Res. 2004, 135, 1–11. [CrossRef] Remote Sens. 2019, 11, 1007 14 of 16 15. Ramsey, M.S.;Wessels, R.L.; Anderson, S.A. Surface textures and dynamics of the 2005 lava dome at Shiveluch Volcano, Kamchatka. Geol. Soc. Am. Bull. 2012, 124, 678–689. [CrossRef] 16. Sobrino, J.A.; Del Frate, F.; Drusch, M.; Jiménez-Muñoz, J.C.; Manunta, P.; Regan, A. Review of thermal infrared applications and requirements for future high-resolution sensors. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2963–2972. [CrossRef] 17. Schmetz, J.; Pili, P.; Tjemkes, S.; Just, D.; Kerkmann, J.; Rota, S.; Ratier, A. An introduction to Meteosat second generation (MSG). Bull. Am. Meteorol. Soc. 2002, 83, 977–992. [CrossRef] 18. Sun, D.; Pinker, R.T. Estimation of land surface temperature from a Geostationary Operational Environmental Satellite (GOES-8). J. Geophys. Res. Atmos. 2003, 108. [CrossRef] 19. Wan, Z.; Snyder, W. MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD), Version 3.2; Institute for Computational Earth System Science, University of California: Santa Barbara, CA, USA, 1996. 20. Li, Z.-L.; Becker, F. Feasibility of land surface temperature and emissivity determination from AVHRR data. Remote Sens. Environ. 1993, 85, 67–85. [CrossRef] 21. Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [CrossRef] 22. Buongiorno, M.F.; Pieri, D.; Silvestri, M. Thermal analysis of volcanoes based on 10 years of ASTER data on Mt. Etna. In Thermal Infrared Remote Sensing; Sensors, Methods, Applications; Springer: Dordrecht, The Netherlands, 2013; pp. 409–428. 23. Coppola, D.; Laiolo, M.; Cigolini, C.; Delle Donne, D.; Ripepe, M. Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system. Geol. Soc. Lond. Spec. Publ. 2016, 426, 181–205. [CrossRef] 24. Harris, A.; Butterworth, A.; Carlton, R.; Downey, I.; Miller, P.; Navarro, P.; Rothery, D. Low-cost volcano surveillance from space: Case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus. Bull. Volcanol. 1997, 59, 49–64. [CrossRef] 25. Lombardo, V.; Harris, A.J.L.; Calvari, S.; Buongiorno, M.F. Spatial variations in lava flow field thermal structure and e usion rate derived from very high spatial resolution hyperspectral (MIVIS) data. J. Geophys. Res. Solid Earth 2009, 114. [CrossRef] 26. Harris, A.J.; Rose, W.I.; Flynn, L.P. Temporal trends in lava dome extrusion at Santiaguito 1922–2000. Bull. Volcanol. 2003, 65, 77–89. [CrossRef] 27. Van Manen, S.M.; Dehn, J.; Blake, S. Satellite thermal observations of the Bezymianny lava dome 1993–2008: Precursory activity, large explosions, and dome growth. J. Geophys. Res. Solid Earth 2010, 115. [CrossRef] 28. Higgins, J.; Harris, A. VAST: A program to locate and analyse volcanic thermal anomalies automatically from remotely sensed data. Comput. Geosci. 1997, 23, 627–645. [CrossRef] 29. Silvestri, M.; Cardellini, C.; Chiodini, G.; Buongiorno, M.F. Satellite-derived surface temperature and in situ measurement at Solfatara of Pozzuoli (Naples, Italy). Geochem. Geophys. Geosyst. 2016, 17, 2095–2109. [CrossRef] 30. Harris, A.J.L.;Wright, R.; Flynn, L.P. Remote Monitoring of Mount Erebus Volcano, Antarctica, Using Polar Orbiters: Progress and Prospects. Int. J. Remote Sens. 1999, 20, 3051–3071. [CrossRef] 31. Hernández, P.A.; Calvari, S.; Ramos, A.; Pérez, N.M.; Márquez, A.; Quevedo, R.; Barrancos, J.; Padrón, E.; Padilla, G.D.; López, D.; et al. Magma emission rates from shallow submarine eruptions using airborne thermal imaging. Remote Sens. Environ. 2014, 154, 219–225. [CrossRef] 32. Oppenheimer, C.; Yirgu, G. Thermal imaging of an active lava lake: Erta ’Ale volcano, Ethiopia. Int. J. Remote Sens. 2002, 23, 4777–4782. [CrossRef] 33. Laiolo, M.; Coppola, D.; Barahona, F.; Benítez, J.E.; Cigolini, C.; Escobar, D.; Funes, R.; Gutierrez, E.; Henriquez, B.; Hernandez, A.; et al. Evidences of volcanic unrest on high-temperature fumaroles by satellite thermal monitoring: The case of Santa Ana volcano, El Salvador. J. Volcanol. Geotherm. Res. 2017, 340, 170–179. [CrossRef] 34. Aufaristama, M.; Hoskuldsson, A.; Jonsdottir, I.; Ulfarsson, M.O.; Thordarson, T. New insights for detecting and deriving thermal properties of lava flow using infrared satellite during 2014–2015 e usive eruption at Holuhraun, Iceland. Remote Sens. 2018, 10, 151. [CrossRef] 35. Spampinato, L.; Oppenheimer, C.; Cannata, A.; Montalto, P.; Salerno, G.G.; Calvari, S. On the time-scale of thermal cycles associated with open-vent degassing. Bull. Volcanol. 2012, 74, 1281–1292. [CrossRef] Remote Sens. 2019, 11, 1007 15 of 16 36. Gresse, M.; Vandemeulebrouck, J.; Byrdina, S.; Chiodini, G.; Revil, A.; Johnson, T.C.; Ricci, T.; Vilardo, G.; Mangiacapra, A.; Lebourg, T.; et al. Three-Dimensional Electrical Resistivity Tomography of the Solfatara Crater (Italy): Implication for the Multiphase Flow Structure of the Shallow Hydrothermal System. J. Geophys. Res. Solid Earth 2017, 122, 8749–8768. [CrossRef] 37. Orsi, G.; De Vita, S.; di Vito, M. The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J. Volcanol. Geotherm. Res. 1996, 74, 179–214. [CrossRef] 38. Orsi, G.; Civetta, L.; Del Gaudio, C.; de Vita, S.; Di Vito, M.A.; Isaia, R.; Petrazzuoli, S.M.; Ricciardi, G.P.; Ricco, C. Short-term ground deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): An example of active block-resurgence in a densely populated area. J. Volcanol. Geotherm. Res. 1999, 91, 415–451. [CrossRef] 39. Di Vito, M.; Isaia, R.; Orsi, G.; Southon, J.; de Vita, S.; D’Antonio, M.; Pappalardo, L.; Piochi, M. Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 1999, 91, 221–246. [CrossRef] 40. Deino, A.L.; Orsi, G.; de Vita, S.; Piochi, M. The age of the Neapolitan Yellow Tu caldera-forming eruption (Campi Flegrei caldera—Italy) assessed by 40Ar/39Ar dating method. J. Volcanol. Geotherm. Res. 2004, 133, 157–170. [CrossRef] 41. Vitale, S.; Isaia, R. Fractures and faults in volcanic rocks (Campi Flegrei, southern Italy): Insight Into Volcano-tectonic processes. Int. J. Earth Sci. 2014, 103, 801–819. [CrossRef] 42. Scarpati, C.; Sparice, D.; Perrotta, A. Comparative proximal features of the main Plinian deposits (Campanian Ignimbrite and Pomici di Base) of Campi Flegrei and Vesuvius. J. Volcanol. Geotherm. Res. 2016, 321, 149–157. [CrossRef] 43. Di Vito, M.A.; Acocella, V.; Aiello, G.; Barra, D.; Battaglia, M.; Carandente, A.; Del Gaudio, C.; de Vita, S.; Ricciardi, G.P.; Ricco, C.; et al. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption. Sci. Rep. 2016, 6, 32245. [CrossRef] 44. Del Gaudio, C.; Aquino, I.; Ricciardi, G.P.; Ricco, C.; Scandone, R. Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009. J. Volcanol. Geotherm. Res. 2010, 195, 48–56. [CrossRef] 45. Iannaccone, G.; Guardato, S.; Donnarumma, G.P.; De Martino, P.; Dolce, M.; Macedonio, G.; Chierici, F.; Beranzoli, L. Measurement of Seafloor Deformation in the Marine Sector of the Campi Flegrei Caldera (Italy). J. Geophys. Res. Solid Earth 2018, 123, 66–83. [CrossRef] 46. Caliro, S.; Chiodini, G.; Moretti, R.; Avino, R.; Granieri, D.; Russo, M.; Fiebig, J. The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim. Cosmochim. Acta 2007, 71, 3040–3055. [CrossRef] 47. Chiodini, G.; Avino, R.; Caliro, S.; Minopoli, C. Temperature and pressure gas geoindicators at the Solfatara fumaroles (Campi flegrei). Ann. Geophys. 2011, 54, 151–160. 48. Chiodini, G.; Caliro, S.; Cardellini, C.; Granieri, D.; Avino, R.; Baldini, A.; Donnini, M.; Minopoli, C. Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. J. Geophys. Res. 2010, 115, B03205. [CrossRef] 49. Chiodini, G.; Vandemeulebrouck, J.; Caliro, S.; D’Auria, L.; De Martino, P.; Mangiacapra, A.; Petrillo, Z. Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera. Earth Planet. Sci. Lett. 2015, 414, 58–67. [CrossRef] 50. Landsat Missions Timeline | Landsat Missions. Available online: https://landsat.usgs.gov/landsat-missionstimeline (accessed on 2 October 2018). 51. USGS. Landsat 8 (L8) Data Users Handbook; Version 2.0; EROS: Sioux Falls, SD, USA, 2016. 52. Barsi, J.A.; Barker, J.L.; Schott, J.R. An Atmospheric Correction Parameter Calculator for a single thermal band earth-sensing instrument. In Proceedings of the IGARSS 2003, Toulouse, France, 21–25 July 2003. 53. Silvestri, M.; Rabu , F.; Pisciotta, A.; Musacchio, M.; Diliberto, I.S.; Spinetti, C.; Lombardo, V.; Colini, L.; Buongiorno, M.F. Analysis of Thermal Anomalies in Volcanic Areas Using Multiscale and Multitemporal Monitoring: Vulcano Island Test Case. Remote Sens. 2019, 11, 134. [CrossRef] 54. ASTER Mission. Available online: https://asterweb.jpl.nasa.gov/mission.asp (accessed on 2 October 2018). 55. Kahle, A.B.; Palluconi, F.D.; Hook, S.J.; Realmuto, V.J.; Bothwell, G. The advanced spaceborne thermal emission and reflectance radiometer (Aster). Int. J. Imaging Syst. Technol. 1991, 3, 144–156. [CrossRef] Remote Sens. 2019, 11, 1007 16 of 16 56. Ramsey, M.; Dehn, J. Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR. J. Volcanol. Geotherm. Res. 2004, 135, 127–146. [CrossRef] 57. Carter, A.J.; Ramsey, M.S.; Belousov, A.B. Detection of a new summit crater on Bezymianny Volcano lava dome: satellite and field-based thermal data. Bull. Volcanol. 2007, 69, 811–815. [CrossRef] 58. Ramsey, M.S. Closing the terrestrial-planetary remote sensing loop: Spectral, spatial and physical proxies. In Proceedings of the American Geophysical Union, Fall Meeting 2002, San Francisco, CA, USA, 6–10 December 2002. 59. Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [CrossRef] 60. FLIR A655sc High-Resolution Science Grade LWIR Camera | FLIR Systems. Available online: https: //www.flir.com/products/a655sc/ (accessed on 25 September 2018). 61. Harris, A. Thermal Remote Sensing of Active Volcanoes: A User’s Manual; Cambridge University Press: Cambridge, UK, 2013; ISBN 052185945X. 62. Sansivero, F.; Scarpato, G.; Vilardo, G. The automated infrared thermal imaging system for the continuous long-term monitoring of the surface temperature of the Vesuvius crater. Ann. Geophys. 2013, 56, S0454. 63. Liu, X.; Zhang, Z.; Peterson, J.; Chandra, S. LiDAR-Derived High Quality Ground Control Information and DEM for Image Orthorectification. Geoinform. 2007, 11, 37–53. [CrossRef] 64. ESRI. ArcGIS Desktop: Release 10; Environmental Systems Research Institute, Inc.: Redlands, CA, USA, 2011. 65. Silvestri, M.; Diaz, J.A.; Marotta, E.; Dalla Via, G.; Bellucci Sessa, E.; Caputo, T.; Buongiorno, M.F.; Sansivero, F.; Musacchio, M.; Belviso, P.; et al. The 2016 Field Campaign of La Solfatara Volcano: Monitoring Methods and Instruments for Volcanic Surveillance; Technical Report; INGV: Roma, Italy, 2017. 66. Città Metropolitana di Napoli—Telerilevamento mediante Lidar. Available online: http://sit. cittametropolitana.na.it/lidar.html (accessed on 19 October 2018). 67. Cleveland, R.B.; Cleveland,W.S.; McRae, J.E.; Terpenning, I.J. STL:Aseasonal-trend decomposition procedure based on loess. J. O . Stat. 1990, 6, 3–73. 68. Sansivero, F.; Vilardo, G. Processing Thermal Infrared Imagery Time-Series from Volcano Permanent Ground-Based Monitoring Network. Latest Methodological Improvements to Characterize Surface Temperatures Behavior of Thermal Anomaly Areas. Remote Sens. 2019, 11, 553. [CrossRef] 69. R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. 70. Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [CrossRef] 71. Zhou, Z.G.; Tang, P.; Zhou, M. Detecting anomaly regions in satellite image time series based on seasonal autocorrelation analysis. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci 2016, 303–310. [CrossRef]en
dc.description.obiettivoSpecifico6V. Pericolosità vulcanica e contributi alla stima del rischioen
dc.description.obiettivoSpecifico1IT. Reti di monitoraggio e sorveglianzaen
dc.description.obiettivoSpecifico5IT. Osservazioni satellitarien
dc.description.obiettivoSpecifico6IT. Osservatori non satellitarien
dc.description.journalTypeJCR Journalen
dc.contributor.authorCaputo, Teresaen
dc.contributor.authorBellucci Sessa, Elianaen
dc.contributor.authorSilvestri, Malvinaen
dc.contributor.authorBuongiorno, Maria Fabriziaen
dc.contributor.authorMusacchio, Massimoen
dc.contributor.authorSansivero, Fabioen
dc.contributor.authorVilardo, Giuseppeen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0003-3473-4697-
crisitem.author.orcid0000-0003-2521-6476-
crisitem.author.orcid0000-0001-6519-3868-
crisitem.author.orcid0000-0002-6095-6974-
crisitem.author.orcid0000-0002-6235-1565-
crisitem.author.orcid0000-0002-9146-4243-
crisitem.author.orcid0000-0001-7240-4467-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
2019_Caputo_RS_TIR_SAT.pdf11.17 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

3
checked on Feb 10, 2021

Page view(s)

923
checked on Apr 17, 2024

Download(s)

38
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric