Please use this identifier to cite or link to this item:
Authors: Stock, Michael J.* 
Humphreys, Madeleine C. S* 
Smith, Victoria C.* 
Isaia, Roberto* 
Brooker, Richard A* 
Pyle, David M.* 
Title: Tracking Volatile Behaviour in Sub-volcanic Plumbing Systems Using Apatite and Glass: Insights into Pre-eruptive Processes at Campi Flegrei, Italy
Issue Date: 2018
Series/Report no.: /59 (2018)
DOI: 10.1093/petrology/egy020
Abstract: Volatile elements play an important role in many aspects of the physicochemical architecture of sub-volcanic plumbing systems, from the liquid line of descent to the dynamics of magma storage and eruption. However, it remains difficult to constrain the behaviour of magmatic volatiles on short timescales before eruption using established petrological techniques (e.g. melt inclusions); specifically, in the final days to months of magma storage. This study presents a detailed model of pre-eruptive volatile behaviour in the Campi Flegrei system (Italy), through combined analyses of apatite crystals and glass. The deposits of eight eruptions were examined, covering the full spectrum of melt compositions, eruptive styles and periods of activity at Campi Flegrei in the past 15 kyr. Measured apatite compositions are compared with thermodynamic models that predict the evolution of the crystal compositions during different fractional crystallization scenarios, including (1) volatile-undersaturated conditions, (2) H2O-saturated conditions and (3) varying P–T conditions. The compositions of clinopyroxene-hosted and biotite-hosted apatite inclusions are consistent with crystallization under volatile-undersaturated conditions that persisted until late in magmatic evolution. Apatite microphenocrysts show significantly more compositional diversity, interpreted to reflect a mixed cargo of crystals derived from volatile-undersaturated melts at depth and melts that have undergone cooling and degassing in discrete shallow-crustal magma bodies. Apatite microphenocrysts from lavas show some re-equilibration during cooling at the surface. Clinopyroxene-hosted melt inclusions within the samples typically contain 2–4 wt % H2O, indicating that they have been reset during temporary magma storage at 1–3km depth, similar to the depth of sill emplacement during recent seismic crises at Campi Flegrei. Comparable apatite compositional trends are identified in each explosive eruption analysed, regardless of volume, composition or eruption timing. However, apatites from the different epochs of activity appear to indicate subtle changes in the H2O content of the parental melt feeding the Campi Flegrei system over time. This study demonstrates the potential utility of integrated apatite and glass analysis for investigating pre-eruptive volatile behaviour in apatite-bearing magmas
Appears in Collections:Papers Published / Papers in press

Files in This Item:
File Description SizeFormat 
Stock M.J. et al. J Petrology_2018.pdfMain article2.34 MBAdobe PDFView/Open
Show full item record

Page view(s)

checked on May 27, 2019


checked on May 27, 2019

Google ScholarTM