Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/12597
Authors: Fedi, M.* 
Cella, F.* 
D'Antonio, M.* 
Florio, G.* 
Paoletti, V.* 
Morra, V.* 
Title: Gravity modeling finds a large magma body in the deep crust below the Gulf of Naples, Italy
Journal: Scientific reports 
Series/Report no.: /8(2018)
Issue Date: 29-May-2018
DOI: 10.1038/s41598-018-26346-z
Abstract: We analyze a wide gravity low in the Campania Active Volcanic Area and interpret it by a large and deep source distribution of partially molten, low-density material from about 8 to 30 km depth. Given the complex spatial-temporal distribution of explosive volcanism in the area, we model the gravity data consistently with several volcanological and petrological constraints. We propose two possible models: one accounts for the coexistence, within the lower/intermediate crust, of large amounts of melts and cumulates besides country rocks. It implies a layered distribution of densities and, thus, a variation with depth of percentages of silicate liquids, cumulates and country rocks. The other reflects a fractal density distribution, based on the scaling exponent estimated from the gravity data. According to this model, the gravity low would be related to a distribution of melt pockets within solid rocks. Both density distributions account for the available volcanological and seismic constraints and can be considered as end-members of possible models compatible with gravity data. Such results agree with the general views about the roots of large areas of ignimbritic volcanism worldwide. Given the prolonged history of magmatism in the Campania area since Pliocene times, we interpret the detected low-density body as a developing batholith.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
s41598-018-26346-z.pdf5.2 MBAdobe PDFView/Open
Show full item record

WEB OF SCIENCETM
Citations 5

16
checked on Feb 7, 2021

Page view(s)

80
checked on Apr 24, 2024

Download(s)

35
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric