Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/12400
DC FieldValueLanguage
dc.date.accessioned2019-03-12T07:57:02Zen
dc.date.available2019-03-12T07:57:02Zen
dc.date.issued2018en
dc.identifier.urihttp://hdl.handle.net/2122/12400en
dc.descriptionThis article has been accepted for publication in Geophysical Journal International ©: The Authors 2018. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.en
dc.description.abstractDirectional site effects observed at seismological stations on pronounced relief are analysed. We investigate the ground motion properties calculating horizontal-to-vertical spectral ratios and horizontal polarization of both ambient vibrations and earthquake records using broad- band seismograms of the Italian seismic network. We find that a subset of 47 stations with pronounced relief results in a significant (>2) directional amplification of the horizontal component, with a well-defined, site-specific direction of motion. However, the horizontal spectral response of sites is not uniform, varying from an isolated (resonant) frequency peak to a broad-band amplification, interesting frequency bands as large as 1–10 Hz in many cases. Using 47 selected stations, we have tried to establish a relation between directional amplification and topography geometry in a 2-D vision, when applicable, through a morphological analysis of the digital elevation model using geographic information systems. The procedure computes the parameters that characterize the geometry of topographic irregularities (size and slope), in combination with a principal component analysis that automatically yields the orientation of the elongated ridges. In seeking a relation between directional amplification and the surface morphology, we have found that it is impossible to fit the variety of observations with a resonant topography model as well as to identify common features in the ground motion behaviour for stations with similar topography typologies. We conclude that, rather than the shape of the topography, local structural complexities and details of the near-surface structure must play a predominant role in controlling ground motion properties at sites with pronounced relief.en
dc.language.isoEnglishen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/214 (2018)en
dc.rightsCC0 1.0 Universalen
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/en
dc.subjectTime-series analysis; Site effects; Wave scattering and diffraction; Wave propa- gation; Tectonics and landscape evolutionen
dc.titleA systematic analysis of directional site effects at stations of the Italian seismic network to test the role of local topographyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber635–650en
dc.identifier.doi10.1093/gji/ggy133en
dc.relation.referencesBard, P.-Y. & Tucker, B.E., 1985. Underground and ridge site effects: a comparison of observation and theory, Bull. seism. Soc. Am., 75, 905– 922. Boore, D.M., 1972. A note on the effect of simple topography on seismic SH waves, Bull. seism. Soc. Am., 62, 275–284. Bouchon, M., 1973. Effect of topography on surface motion, Bull. seism. Soc. Am., 63, 615–632. Buech, F., Davies, T.R. & Pettinga, J.R., 2010. The little red hill seismic experimental study: topographic effects on ground motion at a Bedrock- Dominated mountain edifice, Bull. seism. Soc. Am., 100, 2219–2229. Burjanek,J.,Fa ̈h,D.,Pischiutta,M.,Rovelli,A.,Calderoni,G.&Bard, P.-Y., NERA-JRA1 working group, 2014. Site effects at sites with pro- nounced topography: overview & recommendations, Research report for EU project NERA, 64 pp. Burjanek, J., Moore, J.R., Yugsi Molina, F.X. & Fa ̈h, D. 2012. Instrumental evidence of normal mode rock slope vibration, Geophys. J. Int., 188(2), 559–569. Cara, F., Di Giulio, G., Milana, G., Bordoni, P., Haines, J. & Rovelli, A., 2010. On the stability and reproducibility of the horizontal-to-vertical spectral ratios on ambient noise: case study of Cavola, northern Italy, Bull. seism. Soc. Am., 100(3), 1263–1275. Celebi, M., 1987. Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake, Bull. seism. Soc. Am., 77, 1147–1167. CEN, 2003. prEN 1998-1-Eurocode 8: design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings, Draft No 6, Doc CEN/TC247/SC8/N335, January 2003, Brussels. Chavez-Garcia, F.J., Sanchez, L.R. & Hatzfeld, D., 1996. Topographic site effect and HVSR: a comparison between observation and theory, Bull. seism. Soc. Am., 86(5), 1559–1573. Cultrera, G., Rovelli, A., Mele, G., Azzara, R., Caserta, A. & Marra, F., 2003. Azimuth dependent amplification of weak and strong ground mo- tions within a fault zone, Nocera Umbra, Central Italy, J. geophys. Res., 108(B3), 2156–2170. Davis, L.L. & West, L.R., 1973. Observed effects of topography on ground motion, Bull. seism. Soc. Am., 63, 283–298. Del Gaudio, V. & Wasowski, J., 2007. Directivity of slope dy- namic response to seismic shaking, Geophys. Res. Lett., 34, L12301, doi:10.1029/2007GL029842.. Di Giulio, G., Cara, F., Rovelli, A., Lombardo, G. & Rigano, R., 2009. Evidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italy, J. geophys. Res., 114, doi:10.1029/2009JB006393. Gaffet, S. & Bouchon, M., 1989. Effects of two-dimensional topographies using the discrete wavenumber-boundary integral equation method in P-SV cases, J. Acoust. Soc. Am., 85, 2277–2283. Gazetas, G., Kallou, P.V. & Psarropoulos, P.N., 2002. Topography and soil effects in the M-S 5.9 Parnitha (Athens) earthquake: the case of Adames, Nat. Hazards, 27, 133–169. Glinsky, N. & Bertrand, E., 2017. Numerical investigation of topographical site effects: parametric study on simplified geometries and impact of Downloaded from https://academic.oup.com/gji/article-abstract/214/1/635/4956527 by INGV user on 02 July 2018 the inner geological structure, in Proceedings of 16WCEE, 16th World Conference on Earthquake Engineering, Santiago, Chile. Goldstein, P., Dodge, D., Firpo, M. & Minner, L., 2002. SAC2000: signal processing and analysis tools for seismologists and engineers, in Interna- tional Handbook of Earthquake and Engineering Seismology, Part B, Vol. 81, International Geophysics Series, pp. 1613–1614, eds Lee, W.H.K., Kanamori, H., Jennings, P.C. & Kisslinger, C., Academic Press. Griffiths, D.W. & Bollinger, G.A., 1979. The effect of Appalachian Mountain topography on seismic waves, Bull. seism. Soc. Am., 69, 1081–1105. Ge ́li, L., Bard, P.-Y. & Jullien, B., 1988. The effect of topography on earth- quake ground motion: a review and new results, Bull. seism. Soc. Am., 78(1), 42–63. Hartzell, S., Carver, D.L. & King, K.W., 1994. Initial investigation of site and topographic effects at Robinwood Ridge, California, Bull. seism. Soc. Am., 84, 1336–1349. Hartzell, S., Meremonte, M., Ramirez-Guzman, L. & McNamara, D., 2013. Ground motion in the presence of complex topography: earthquake and ambient noise sources, Bull. seism. Soc. Am., 104, 451–466. Hartzell, S., Ram ́ırez-Guzma ́n, L., Meremonte, M. & Leeds, A., 2016. Ground motion in the presence of complex topography II: earthquake sources and 3D simulations, Bull. seism. Soc. Am., 107(1), 344–358. Hough, S.E. et al., 2010. Localized damage caused by topographic amplifi- cation during the 2010 M7.0 Haiti earthquake, Nat. Geosci., 3, 778–782. Jurkevics, A., 1988. Polarization analysis of three component array data, Bull. seism. Soc. Am., 78, 1725–1743. Kanasewich, E.R., 1981. Time Sequence Analysis in Geophysics, University of Alberta Press, 477 pp.. Kawase, H. & Aki, K., 1990. Topography effect at the critical SV-wave inci- dence: possible explanation of damage pattern by the Whittier Narrows, California, earthquake of 1 October 1987, Bull. seism. Soc. Am., 80, 1–22. Le Brun, B., Hatzfeld, D. & Bard, P.-Y., 1999. Experimental study of the ground-motion on a large scale topographic hill a Kitherion (Greece), J. Seismol, 3, 1–15. Lee, S.J., Chan, Y.C., Komatitsch, D., Huang, B.S. & Tromp, J., 2009. Effects of realistic surface topography on seismic ground motion in the Yangminshan region of Taiwan based upon the spectral-element method and LiDAR DTM, Bull. seism. Soc. Am., 99, 681–693. Marzorati, S., Ladina, C., Falcucci, E., Gori, S., Ameri, G. & Galadini, F., 2011. Site effects “on the rock”: the case of Castelvecchio Subequo (L’Aquila, Central Italy), Bull. Earth. Eng., 9(3), 841–868. Massa, M., Barani, S. & Lovati, S., 2014. Overview of topographic ef- fects based on experimental observations: meaning, causes and possible interpretations, Geophys. J. Int., 197(3), 1537–1547. Massa, M., Lovati, S., D’Alema, E., Ferretti, G. & Bakavoli, M., 2010. An experimental approach for estimating seismic amplification effects at the top of a ridge, and the implication for ground-motion predictions: the case of Narni (central Italy), Bull. seism. Soc. Am., 100, 3020–3034. Maufroy, E., Cruz-Atienza, V.M. & Gaffet, S., 2012. A robust method for assessing 3-D topographic site effects: a case study at the LSBB Under- ground Laboratory, France, Earthq. Spectra, 28, 1097–1115. McCrink, T.P., Willis, C.J., Real, C.R. & Manson, M.W., 2010. Effects of topographic position and geology on shaking damage to residential woodframed structures during the 2003 San Simeon Earthquake, Western San Luis Obispo County, California, Earthq. Spectra, 26, 779–802. Michel, C., Edwards, B. & Poggi, V., 2014. Assessment of site effects in alpine regions through systematic site characterization of seismic stations, Bull. seism. Soc. Am., 104, 2809–2826. Moore, J.R., Gischig, V., Burja`nek, J., Loew, S. & Faeh, D., 2011. Site effects in unstable rock slopes: dynamic behavior of the Randa instability (Switzerland), Bull. seism. Soc. Am., 101, 3110–3116. NTC, 2008. Norme Tecniche Per le Costruzioni, DM 14/01/2008, GU n.29 del 04/02/2008, Suppl. Ord. 30 (in Italian). Paolucci, R., 2002. Amplification of earthquake ground motion by steep topographic irregularities, Earthq. Eng. Struct. Dyn., 31, 1831–1853. Pedersen, H.A., Le Brun, B., Hatzfeld, D., Campillo, M. & Bard, P.-Y., 1994. Ground-motion amplitude across ridges, Bull. seism. Soc. Am., 84, 1786–1800.Pessina, V. & Fiorini, E., 2014. A GIS procedure for fast topographic char- acterization of seismic recording stations, Soil Dyn. Earthq. Eng., 63, 248–258. Pischiutta, M, Pastori, M, Improta, L, Salvini, F & Rovelli, A, 2014 Orthog- onal rela-tion between wavefield polarization and fast S-wave direction in the Val d’Agri region: an integrating method to investigate rock anisotropy J. Geophys. Res., Solid Earth, 119, 1–13, doi: 10.1002/2013JB010077. Pischiutta, M., Cultrera, G., Caserta, A., Luzi, L. & Rovelli, A., 2010. Topographic effects on the hill of Nocera Umbra, central Italy, Geophys. J. Int., 182, 977–987. Pischiutta, M., Rovelli, A., Salvini, F., Di Giulio, G. & Ben-Zion, Y., 2013. Directional resonance variations across the Pernicana fault, Mt. Etna, in relation to brittle deformation fields, Geophys. J. Int., 193, 986–996. Pischiutta, M., Salvini, F., Fletcher, J.B., Rovelli, A. & Ben-Zion, Y., 2012. Horizontal polarization of ground motion in the Hayward fault zone at Fremont, California: dominant fault-high-angle polarization and fault- induced cracks, Geophys. J. Int, 188(3), 1255–1272. Pischiutta, M., Savage, M., Holt, R. & Salvini, F., 2015. Fracture-related wavefield polarization and seismic anisotropy across the Greendale Fault, J. geophys. Res., Solid Earth, 120, 7048–7067. Ponti, D.J. & Wells, R.E., 1991. Off-fault ground ruptures in the Santa Cruz Mountains, California: ridge-top spreading versus tectonic extension during the 1989 Loma Prieta earthquake, Bull. seism. Soc. Am., 81, 1480– 1510. Rigano, R., Cara, F., Lombardo, G. & Rovelli, A., 2008. Evidence of ground motion polarization on fault zones of Mount Etna volcano, J. geophys. Res., 113(B10), doi:10.1029/2007JB005574. SESAME, 2004. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: measurements, processing and interpretation, SESAME European Research Project WP12, deliverable D23.12. Availabe at: http://sesame-fp5.obs.ujfgrenoble.fr/Deliverables, last accessed 16 April, 2018. Shakal, A., Huang, M. & Cao, T., 1988. The Whittier Narrows, Califor- nia, earthquake of October 1, 1987: CSMIP strong motion data, Earthq. Spectra, 4, 75–100. Spudich, P., Hellweg, M. & Lee, W.H.K., 1996. Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: implications for mainshock motions, Bull. seism. Soc. Am., 86, S193–S208. Spudich, P. & Xu , L., 2003. SpudichDocumentation of software package ISOSYN:isochrone integration programs for earthquake ground motion calculations, CD accompanying IASPEI Handbook of Earthquake & En- gineering Seismology , p. 72pp. Sa ́nchez-Sesma, F.J. & Campillo, M., 1991. Diffraction of P, SV, and Rayleigh waves by topographic features: a boundary integral formula- tion, Bull. seism. Soc. Am., 81(6), 2234–2253. Tucker, B.E., King, J.L., Hatzfeld, D. & Nersesov, I.L., 1984. Observations of hard rock site effects, Bull. seism. Soc. Am., 74, 121–136. Turcotte, D.L., 1997. Fractals and Chaos in Geophysica, Cambridge Univ. Press, 398 pp.. Umeda, Y., Kuroiso, A., Ito, K. & Muramatu, I., 1987. High accelerations produced by the Western Nagano Prefecture, Japan, earthquake of 1984, Tectonophysics, 141(4), 335–343. Weiss, A., 2001. Topographic position and land form analysis, Poster pre- sentation, ESRI Users Conference, San Diego, CA.en
dc.description.obiettivoSpecifico5T. Sismologia, geofisica e geologia per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.contributor.authorPischiutta, Martaen
dc.contributor.authorCianfarra, Paolaen
dc.contributor.authorSalvini, Francescoen
dc.contributor.authorCara, Fabrizioen
dc.contributor.authorVannoli, Paolaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptDipartimento di Scienze Geologiche - Università degli Studi di Roma Tre.-
crisitem.author.deptRoma Tre University-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-9991-5048-
crisitem.author.orcid0000-0001-9396-4519-
crisitem.author.orcid0000-0002-1702-563X-
crisitem.author.orcid0000-0001-7199-0388-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
GJI_Italian_seismic_network.pdf8.79 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 10

4
checked on Feb 7, 2021

Page view(s)

623
checked on Mar 27, 2024

Download(s)

82
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric