Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.description.abstractSeismic resonance inside sedimentary basins severely influences ground shaking at the free surface in case of earthquakes. Starting from few observations of a low-frequency resonance in the historical center of Rome, Italy, we performed several single-station ambient vibration measures to verify and estimate the resonance frequency in a wide area of the city by Horizontal-to-Vertical spectral ratio method. We verified a stable low-frequency peak in the range 0.3–0.4 Hz. Recordings of August 24th 2016, Mw 6.0 Amatrice earthquake, available both inside and outside the basin of Rome, confirm the presence of high-energy components at frequencies of 0.2–0.4 Hz within the basin. These observations support the hypothesis of a deep seismic impedance contrast responsible for the low frequency resonance. To infer the depth range of subsoil deposits related to this impedance contrast, we analyzed ambient vibration data recorded by 2-D seismic arrays aiming at retrieving the shear-wave velocity structure up to relevant depths. To increase the investigation depth (up to 2000 m), we jointly inverted for Rayleigh-waves dispersion and ellipticity curves and resonance frequency. The shear-wave velocity profile shows two main discontinuities at depths of about 500 m and 1800 m that can be related to the bottom of the Plio-Pleistocene filling of the Rome basin and to the top of the basal limestone formation, respectively. These results fill a gap of knowledge about the deep velocity structure in the city that may be helpful for ground-motion scenario studies.en_US
dc.publisher.nameSpringer International Publishingen_US
dc.relation.ispartofPure and Applied Geophysicsen_US
dc.relation.ispartofseries6/176 (2019)en_US
dc.subjectAmbient vibrationsen_US
dc.subjecthorizontal-to-vertical spectral ratioen_US
dc.subjectsurface-waves dispersion curveen_US
dc.subjectjoint inversionen_US
dc.titleThe Deep Bedrock in Rome, Italy: A New Constraint Based on Passive Seismic Data Analysisen_US
dc.subject.INGV04.06. Seismologyen_US
dc.relation.referencesAki, K. (1957). Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bulletin of the Earthquake Research Institute Tokyo University, 35, 415–456. Google Scholar Bard, P. Y., Cadet, H., Endrun, B., Hobiger, M., Renalier, F., Theodulidis, N., Ohrnberger, M., Fäh, D., Sabetta, F., Teves-Costa, P., Duval, A. M., Cornou, C., Guillier, M. Wathelet, A. Savvaidis, A. Köhler, J. Burjanek, V. Poggi, G. Gassner-Stamm, H.B. Havenith B., Hailemikael, S., Almeida, J., Rodrigues, I., Veludo, I., Lacave, C., Thomassin, S., & Kristekova, M. (2009). From non-invasive site characterization to site amplification: recent advances in the use of ambient vibration measurements. In Earthquake Engineering in Europe, Geotechnical, Geological and Earthquake Engineering, 17, 105–123, eds Garevski, M. & Ansal, A., Springer, New York. Google Scholar Bettig, B., Bard, P. Y., Scherbaum, F., Riepl, J., Cotton, F., Cornou, C., et al. (2001). Analysis of dense array noise measurements using the modified spatial auto-correlation method (SPAC): application to the Grenoble area. Bollettino di geofisica teorica ed applicata, v, 42(3–4), 281–304. Google Scholar Bindi, D., Marzorati, S., Parolai, S., Strollo, A., & Jaeckel, K. (2008). Empirical spectral ratios estimated in two deep sedimentary basins using microseisms recorded by short-period seismometers. Geophysical Journal International, 176(1), 175–184. Google Scholar Bongiovanni, G., Buffarini, G., Clemente, P., Rinaldis, D., & Saitta, F. (2017). Dynamic characteristics of the Amphitheatrum Flavium northern wall from traffic-induced vibrations. Annals of Geophysics. Google Scholar Bonnefoy-Claudet, S., Baize, S., Bonilla, L. F., Berge-Thierry, C., Pasten, C., Campos, J., et al. (2009). Site effect evaluation in the basin of Santiago de Chile using ambient noise measurements-. Geophysical Journal International, 176(3), 925–937. Google Scholar Bonnefoy-Claudet, S., Cornou, C., Bard, P. Y., Cotton, F., Moczo, P., Kristek, J., et al. (2006). H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophysical Journal International, 167, 827–837. Google Scholar Boore, D. (2003). Simulation of ground motion using the stochastic method. Pure and Applied Geophysics, 160(3–4), 635–676. Google Scholar Bozzano, F., Caserta, A., Govoni, A., Marra, F., & Martino, S. (2008). Static and dynamic characterization of alluvial deposits in the Tiber River Valley: New data for assessing potential ground motion in the City of Rome. Journal of Geophysical Research, 113, B01303. Google Scholar Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57, 1408–1418. Google Scholar Cara, F., Di Giulio, G., Cavinato, G. P., Famiani, D., & Milana, G. (2011). Seismic characterization and monitoring of Fucino Basin (Central Italy). Bulletin of Earthquake Engineering, 9(6), 1961–1985. Google Scholar Cardarelli, E., Cercato, M., & Orlando, L. (2017). Geometry and seismic characterization of the subsoil below the Colosseum (Amphitheatrum Flavium), Rome. Annals of Geophysics. Google Scholar Caserta, A., Boore, D. M., Rovelli, A., Govoni, A., Marra, F., Della Monica, G., et al. (2013). Ground Motions Recorded in Rome during the April 2009 L’Aquila Seismic Sequence: Site Response and Comparison with Ground-Motion Predictions Based on a Global Dataset. Bulletin of the Seismological Society of America, 103(3), 1860–1874. Google Scholar Chiocchini, U., & Savarese, G. (2017). Review of the stratigraphic record of the borehole Circus Maximus, Rome. Rendiconti Online Societa Geologica Italiana, 43, 17–22. Google Scholar Cinti, F. R., Marra, F., Bozzano, F., Cara, F., Di Giulio, G., & Boschi, E. (2008). Chronostratigraphic study of the Grottaperfetta alluvial valley in the city of Rome (Italy): investigating possible interaction between sedimentary and tectonic processes. Annals of Geophysics, 51, 849–865. Google Scholar Daubechies, I. (1990). The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 36(5), 961–1005. Google Scholar Di Giulio, G., De Nardis, R., Boncio, P., Milana, G., Rosatelli, G., Stoppa, F., et al. (2015). Seismic response of a deep continental basin including velocity inversion: the Sulmona intramontane basin (Central Apennines, Italy). Geophysical Journal International, 204, 418–439. Google Scholar Di Giulio, G., Gaudiosi, I., Cara, F., Milana, G., & Tallini, M. (2014). Shear- wave velocity profile and seismic input derived from ambient vibration array measurements: the case study of downtown L’Aquila. Geophysical Journal International, 198, 848–866. Google Scholar Fäh, D., Kind, F., & Giardini, D. (2001). A theoretical investigation of H/V spectral ratios. Geophysical Journal International, 145, 535–549. Google Scholar Fäh, D., Kind, F., & Giardini, D. (2003). Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects. Journal of Seismology, 7, 449–467. Google Scholar Fäh, D., Ruttener, E., Noack, T., & Kruspan, P. (1997). Microzonation of the city of Basel. Journal of Seismology, 1, 87–102. Google Scholar Fäh, D., Stamm, G., & Havenith, H. B. (2008). Analysis of three-component ambient vibration array measurements. Geophysical Journal International, 172, 199–213. Google Scholar Foti, S., Lai, C.G., Rix, G.J., & Strobbia, C. (2016). Surface Wave Methods for Near-Surface Site Characterization. CRC Press, Boca Raton Reference—487 Pages 265 B/W Illustrations ISBN 9781138077737—CAT# K34336. Google Scholar Funiciello, R., & Giordano, G. (2008a). La nuova carta geologica di roma: Litostratigrafia e organizzazione stratigrafica; in Funiciello R., Praturlon A., Giordano G., (Eds) La Geologia di Roma: dal centro storico alla periferia. Memorie descrittive della Carta Geologica d’Italia, 80(1), pp 39–85. Google Scholar Funiciello, R., & Giordano, G. (2008b). Carta geologica d’Italia alla scala 1:50000. Foglio 374 “Roma” e Note illustrative. APAT, Servizio Geologico d’Italia, p 158. Google Scholar Funiciello, R., & Parotto, M. (1978). Il substrato sedimentario nell’area dei Colli Albani: considerazioni geodinamiche e paleogeografiche sul margine tirrenico dell’Appennino centrale. Geologica Romana, 17, 233–287. Google Scholar Galli, P. A. C., & Molin, D. (2014). Beyond the damage threshold: the historic earthquakes of Rome. Bulletin of Earthquake Engineering, 12, 1277. Google Scholar Graves, R. W., Aagaard, B. T., Hudnut, K. W., Star, L. M., Stewart, J. P., & Jordan, T. H. (2008). Broadband Simulations for Mw 7.8 Southern San Andreas Earthquakes: Ground Motion Sensitivity to Rupture Speed. Geophysical Research Letters. Google Scholar Graves, R., Jordan, T. H., Callaghan, S., Deelman, E., Field, E. H., Juve, G., et al. (2011). CyberShake: A Physics-Based Seismic Hazard Model for Southern California. Pure and Applied Geophysics, 168(3–4), 367–381. Google Scholar Guéguen, P., Cornou, C., Garambois, S., & Banton, J. (2006). On the limitation of the H/V spectral ratio using seismic noise as an exploration tool: application to the Grenoble valley (France), a small apex ratio basin. Pure and Applied Geophysics, 164, 1–20. Google Scholar Hailemikael, S., Milana, G., Cara, F., Vassallo, M. P., Amoroso, S., Bordoni, P., et al. (2017). Subsurface characterization of the Amphiteatrum Flavium area (Rome, Italy) through single-station ambient vibration measurements. Annals of Geophysics, 60(4), S0438. Google Scholar Hobiger, M., Bard, P. Y., Cornou, C., & Le Bihan, N. (2009). Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec). Geophysical Research Letters, 36(14). Google Scholar Hobiger, M., Cornou, C., Wathelet, M., Di Giulio, G., Knapmeyer-Endrun, B., Renalier, F., et al. (2013). Ground structure imaging by inversions of Rayleigh wave ellipticity: sensitivity analysis and application to European strong- motion sites. Geophysical Journal International, 192, 207–229. Google Scholar Karner, D. B., Marra, F., Florindo, F., & Boschi, E. (2001). Pulsed uplift estimated from terrace elevations in the coast of Rome: Evidence for a new phase of volcanic activity? Earth and Planetary Science Letters, 188, 135–148. Google Scholar Kennett, B. L. N., Stipčević, J., & Gorbatov, A. (2015). Spiral-Arm Seismic Arrays. Bulletin of the Seismological Society of America, 105(4), 2109–2116. Google Scholar Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremors. Bulletin of the Seismological Society of America, 88, 228–241. Google Scholar Kumar, P., & Foufoula-Georgiou, E. (1997). Wavelet analysis for geophysical applications. Reviews of Geophysics, 35(4), 385–412. Google Scholar Kvaerna, T., & Ringdahl, F. (1986). Stability of various FK estimation techniques, SemiAnnual technical summary, 1 October 1985–31 March 1986. NORSAR Scientific Report, Kjeller, Norway, 1-86/87, 29–40. Google Scholar Lachet, C., Hatzfeld, D., Bard, P. Y., Theodulidis, N., Papaioannou, C., & Savvaidis, A. (1996). Site Effect and Microzonation in the City of Thessaloniky (Greece). Comparison of Different Approaches. Bulletin of Seismological Society of America, 86(6), 1692–1703. Google Scholar Lacoss, R. T., Kelly, E. J., & Toksoz, M. N. (1969). Estimation of seismic noise structure using arrays. Geophysics, 34, 21–38. Google Scholar Luzi, L., Puglia, R., Russo, E., & ORFEUS WG5; (2016). Engineering Strong Motion Database, version 1.0; Istituto Nazionale di Geofisica e Vulcanologia, Observatories & Research Facilities for European Seismology Mancini, M., Marini, M., Moscatelli, M., Pagliaroli, A., Stigliano, F., Di Salvo, C., et al. (2014). A physical stratigraphy model for seismic microzonation of the Central Archaeological Area of Rome (Italy). Bulletin of Earthquake Engineering, 12, 1339–1363. Google Scholar Marra, F., Carboni, M. G., De Bella, L., Faccenna, C., Funiciello, R., & Rosa, C. (1995). Il substrato Plio-Pleistocenico dell’area Romana. Bollettino della Società Geologica Italiana, 114, 195–214. Google Scholar Marra, F., & Rosa, C. (1995). Stratigrafia e assetto geologico dell’area romana, in “La Geologia di Roma. Il Centro Storico”. Memorie Descrittive della Carta Geologica d’Italia (special issue), 50, 49–118. Google Scholar Milana, G., Bordoni, P., Cara, F., Di Giulio, G., Hailemikael, S., & Rovelli, A. (2014). 1D velocity structure of the Po River plain (Northern Italy) assessed by combining strong motion and ambient noise data. Bulletin of Earthquake Engineering, 2014(12), 2195–2209. Google Scholar Molin, D., Castenetto, S., Di Loreto, E., Guidoboni, E., Liperi, L., Narcisi, B., Paciello, A., Riguzzi, F., Rossi, A., Tertulliani, A., & Traina, G. (1995). Sismicita`. In R. Funiciello (Ed.) Mem. Descr. a Carta Geol. Ital. La Geologia di Roma Il centro storico (vol. 50, pp. 323–408). Google Scholar Morlet, J., Arens, G., Fourgeau, E., & Giard, D. (1982). Wave propagation and sampling theory, part II. Sampling theory and complex waves. Geophysics, 47(2), 222–236. Google Scholar NTC (2018). Norme Tecniche per le Costruzioni, Decreto del Ministero delle Infrastrutture e dei Trasporti 17/01/2018 (Gazzetta Ufficiale n. 42 20/02/2018), in Italian Google Scholar Ohori, M., Nobata, A., & Wakamatsu, K. (2002). A comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor analysis. Bulletin of the Seismological Society of America, 92, 2323–2332. Google Scholar Ohrnberger, M. (2005). Report on the FK/SPAC capabilities and limitations. SESAME Deliverable D19.06, 43 pp, Ohrnberger, M., Schissele, E., Cornou, C., Bonnefoy-Claudet, S., Wathelet, M., Savvaidis, A., Scherbaum, F., & Jongmans, D. (2004). Frequency wavenumber and spatial autocorrelation methods for dispersion curve determination from ambient vibration recordings. In Proceedings of the 13th world conference on earthquake engineering, Vancouver, BC, Paper No 0946. Google Scholar Okada, H. (2006). Theory of efficient array observations of microtremors with special reference to the SPAC method. Exploration Geophysics, 37(1), 73–85. Google Scholar Olsen, K. B. (2000). Site amplification in the Los Angeles Basin from three-dimensional modeling of ground motion. Bulletin of the Seismological Society of America, 90(6B), S77–S94. Google Scholar Olsen, K. B., Akinci, A., Rovelli, A., Marra, F., & Malagnini, L. (2006). 3D ground-motion estimation in Rome, Italy. Bulletin of the Seismological Society of America, 96(1), 133–146. Google Scholar Orlando, L., De Donno, G., Di Giambattista, L., & Palladini, L. (2017). Investigating the foundation of the Colosseum thorough the Passage of Commodus. Annals of Geophysics. Google Scholar Pagliaroli, A., Lanzo, G., Tommasi, P., & Di Fiore, V. (2014a). Dynamic characterization of soils and soft rocks of the central archaeological area of Rome. Bulletin of Earthquake Engineering, 12, 1365–1381. Google Scholar Pagliaroli, A., Quadrio, B., Lanzo, G., & Sanò, T. (2014b). Numerical modelling of site effects in the Palatine Hill, Roman Forum, and Coliseum Archaeological Area. Bulletin of Earthquake Engineering, 12, 1383–1403. Google Scholar Pau, A., & Vestroni, F., (2008). Vibration analysis and dynamic characterization of the Colosseum. Structural Control and Health Monitoring, 15, 1105–1121. Google Scholar Picozzi, M., Parolai, S., & Richwalski, S. M. (2005). Joint inversion of H/V ratios and dispersion curves from seismic noise: estimating the S-wave velocity of bedrock. Geophysical Research Letters. Google Scholar Poggi, V., Fah, D., Burjanek, J., & Giardini, D. (2012). The use of Rayleigh wave ellipticity for site-specific hazard assessment and microzonation: an application to the city of Luzern, Switzerland. Geophysical Journal International, 188, 1154–1172. Google Scholar Rovelli, A., Malagnini, L., Caserta, A., & Marra, F. (1995). Using 1-D and 2-D modelling of ground motion for seismic zonation criteria: Results for the city of Rome. Annali di Geofisica, 38, 591–605. Google Scholar Rovida A., Locati M., Camassi R., Lolli B., Gasperini P. (eds), 2016. CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia. Sambridge, M. (1999). Geophysical inversion with a neighbourhood algorithm: I. Searching a parameter space. Geophysical Journal International, 138, 479–494. Google Scholar Scherbaum, F., Hinzen, K. G., & Ohrnberger, M. (2003). Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations. Geophysical Journal International, 152(3), 597–612. Google Scholar Strollo, A., Parolai, S., Jäckel, K. H., Marzorati, S., & Bindi, D. (2008). Suitability of short-period sensors for retrieving reliable H/V peaks for frequencies less than 1 Hz. Bulletin of the Seismological Society of America, 98(2), 671–681. Google Scholar Wathelet, M. (2008). An improved neighborhood algorithm: parameter conditions and dynamic scaling. Geophysical Research Letters, 35, L09301. Google Scholar Yamanaka, H., Takemura, M., Ishida, H., & Niwa, M. (1994). Characteristics of long-period microtremors and their applicability in exploration of deep sedimentary layers. Bulletin of the Seismological Society of America, 84(6), 1831–1841. Google Scholaren_US
dc.description.obiettivoSpecifico4T. Sismicità dell'Italiaen_US
dc.description.journalTypeJCR Journalen_US
dc.contributor.authorMarcucci, Sandro-
dc.contributor.authorMilana, Giuliano-
dc.contributor.authorHailemikael, Salomon-
dc.contributor.authorCarlucci, Giorgia-
dc.contributor.authorCara, Fabrizio-
dc.contributor.authorDi Giulio, Giuseppe-
dc.contributor.authorVassallo, Maurizio-
dc.contributor.departmentDipartimento della Protezione Civile, Rome, Italyen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentENEA, Centro Ricerche Frascati, Frascati, Italyen_US
dc.contributor.departmentDepartment of Science, Roma Tre University, Rome, Italyen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
item.fulltextWith Fulltext- Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia- della Protezione Civile, Rome, Italy- Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia- Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia- Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia- Nazionale di Geofisica e Vulcanologia- Nazionale di Geofisica e Vulcanologia- Nazionale di Geofisica e Vulcanologia- Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Papers Published / Papers in press
Files in This Item:
File Description SizeFormat 
Marcucci2019_Article_TheDeepBedrockInRomeItalyANewC-2.pdf2.07 MBAdobe PDFView/Open
Show simple item record

Page view(s)

checked on May 27, 2019


checked on May 27, 2019

Google ScholarTM