Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/12307
Authors: Glimsdal, S.* 
Løvholt, Finn* 
Harbitz, C. B.* 
Romano, Fabrizio* 
Lorito, Stefano* 
Orefice, Simone* 
Brizuela, Beatriz* 
Selva, Jacopo* 
Hoechner, A.* 
Volpe, Manuela* 
Babeyko, Andrey* 
Tonini, Roberto* 
Wronna, Martin* 
Omira, Rachid* 
Title: A New Approximate Method for Quantifying Tsunami Maximum Inundation Height Probability
Issue Date: 2019
Series/Report no.: 7/176 (2019)
DOI: 10.1007/s00024-019-02091-w
URI: http://hdl.handle.net/2122/12307
Abstract: Regional and global tsunami hazard analysis requires simplified and efficient methods for estimating the tsunami inundation height and its related uncertainty. One such approach is the amplification factor (AF) method. Amplification factors describe the relation between offshore wave height and the maximum inundation height, as predicted by linearized plane wave models employed for incident waves with different wave characteristics. In this study, a new amplification factor method is developed that takes into account the offshore bathymetry proximal to the coastal site. The present AFs cover the North-Eastern Atlantic and Mediterranean (NEAM) region. The model is the first general approximate model that quantifies inundation height uncertainty. Uncertainty quantification is carried out by analyzing the inundation height variability in more than 500 high-resolution inundation simulations at six different coastal sites. The inundation simulations are undertaken with different earthquake sources in order to produce different wave period and polarity. We show that the probability density of the maximum inundation height can be modeled with a log-normal distribution, whose median is quite well predicted by the AF. It is further demonstrated that the associated maximum inundation height uncertainties are significant and must be accounted for in tsunami hazard analysis. The application to the recently developed TSUMAPS-NEAM probabilistic tsunami hazard analysis (PTHA) is presented as a use case.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat 
2019_Glimsdal_et_al_PAGEOPH_tsunami_amplification.pdf4.73 MBAdobe PDFView/Open
Show full item record

Page view(s)

14
Last Week
0
Last month
checked on May 27, 2019

Download(s)

1
checked on May 27, 2019

Google ScholarTM

Check

Altmetric